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Abstract
In the near future, hardware is expected to become increas-
ingly vulnerable to faults due to continuously decreasing
feature size. Software-level symptoms have previously been
used to detect permanent hardware faults. However, they can
not detect a small fraction of faults, which may lead to Silent
Data Corruptions(SDCs). In this paper, we present a system
that uses invariants to improve the coverage and latency of
existing detection techniques for permanent faults. The ba-
sic idea is to use training inputs to create likely invariants
based on value ranges of selected program variables and
then use them to identify faults at runtime. Likely invariants,
however, can have false positives which makes them chal-
lenging to use for permanent faults. We use our on-line di-
agnosis framework for detecting false positives at runtime
and limit the number of false positives to keep the associ-
ated overhead minimal. Experimental results using micro-
architecture level fault injections in full-system simulation
show 28.6% reduction in the number of undetected faults
and 74.2% reduction in the number of SDCs over existing
techniques, with reasonable overhead for checking code.

1. Introduction
As CMOS feature sizes continue to decrease, hardware re-
liability is emerging as a major bottleneck to reap the ben-
efits of increasing transistor density in microprocessor de-
sign. Chips in the field are expected to see increasing failure
rates due to permanent, intermittent, and transient faults, in-
cluding wear-out, design defects, soft errors, and others [2].
The traditional approach in microprocessor design of pre-
senting an illusion of a failure-free hardware device to soft-
ware will become prohibitively expensive for commodity
systems. Traditional solutions such as dual modular redun-
dancy for tolerating hardware errors incur very high over-
heads in performance, area and power. Recent hardware so-
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lutions such as variations on redundant multithreading im-
prove on this, but still incur significant overheads [27].

Recently, researchers have investigated using software-
visible symptoms to detect hardware errors [5, 9, 19, 24, 25,
26, 30, 32]. While much of that work focuses on transient
or intermittent faults that last a few cycles (e.g., 4 cycles
or less), we have explored using these symptoms to detect
permanent faults in hardware [9].

Using software-level symptoms to detect permanent faults
in hardware has several benefits over traditional hardware-
level solutions. First, using software-level symptoms deals
with only those errors that actually affect software correct-
ness. The rest of the faults are safely ignored, potentially
reducing the incurred overhead due to detection and recov-
ery. Second, the reliability targets for the system under con-
sideration dictates the overheads that the system allows to
achieve those targets. Using software-level symptoms for
detection facilitates exploring these trade-offs in reliability
and overhead seamlessly as they are highly customizable.

We proposed a system design called SWAT, a firmware-
level low-overhead reliability solution that could potentially
handle multiple sources of hardware failures [9] using soft-
ware symptoms such as fatal hardware traps, software hangs,
abnormal application execution, and high OS activity. Im-
plementing these detectors in a thin firmware layer would
present significantly lower hardware cost than using tradi-
tional circuit-level hardware detectors. These detectors help
identify over 95% of hardware faults in many structures. Ad-
ditionally, 86% of these detections can be recovered using
hardware checkpointing schemes, while all these detected
faults are software recoverable [9].

Nevertheless, using these simple symptoms as detectors
results in an SDC rate of 0.8% for permanent hardware faults
in the current SWAT system, which may not be acceptable
for most systems. This motivates the use of more sophisti-
cated detectors to further reduce this SDC rate and increase
detection coverage. In addition, using more sophisticated de-
tectors has the potential of reducing the detection latency of
the detected faults, making more faults amenable to hard-
ware recovery. Recovery through hardware checkpointing
techniques, which can treat detection latencies upto 100K
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cycles [28], are more attractive than those that use software
checkpointing techniques for recovery as it facilitates seam-
less recovery of both the application and the OS in the event
of a fault with much lesser overhead.

In this work, we extend the set of symptom-level detec-
tors in SWAT to include program-level invariants that are
derived from program properties observed during program
execution. We use “likely program invariants” which have
been shown to be a powerful approach in detecting software
bugs [4, 6]. We derive likely program invariants by monitor-
ing the execution of a program for different inputs and iden-
tifying program properties that hold on all such executions. 1

A major drawback with using likely invariants for error de-
tection is that they may lead to false positives: some of the in-
ferred program invariants may be violated for an input as the
program behavior on that input is different compared with
the training inputs used to extract invariants. Hence, likely
program invariants have been proposed and used primarily
for analysis purposes such as program evolution [4], pro-
gram understanding [7], and detecting and diagnosing soft-
ware bugs [4, 6, 12, 33, 13]. The only exceptions have been
for detecting transient hardware faults, where a false positive
can be identified quickly and cheaply [22, 24, 3].

In this paper, we propose and evaluate a hardware-
assisted methodology to use likely invariants for detect-
ing permanent (or intermittent) hardware errors safely. The
SWAT system has a hardware-assisted diagnosis framework
and we adapt it to detect false positives at runtime. We also
limit the number of false positives in a novel way to keep the
associated overhead due to false positive detection low. Us-
ing the principles discussed above, we designed the iSWAT
framework for invariant detection and enforcement, and we
implemented it as an extension of the SWAT system [9].

The contributions of this work are:

• We demonstrate a new hardware-supported strategy for
using unsound program invariants for detecting perma-
nent hardware errors. We believe this is the first work to
use unsound invariants for such errors.

• We show that likely invariants can be extracted efficiently
in software for realistic programs, unlike previous work
which used only toy benchmark programs [22]. Further-
more, because of our tolerance for false positives, we
only need 12 inputs for extracting our invariants while
others have used hundreds of inputs [4, 22].

• We provide a realistic and comprehensive evaluation
with full-system simulation by injecting faults into dif-
ferent micro-architectural structures. Such faults present
more realistic fault scenarios than the previously studied
application-level fault injections.

1 With simple compiler support, this “training” phase can be performed
transparently during debugging runs for any program, and could even be
extended into production runs with more sophisticated tools [11].

• The most important outcome from our experiments is that
our technique reduces SDCs by 74.2%: fewer than 0.2%
of all fault injections are now SDCs.
In more detail, our experimental results show that the

number of undetected faults in iSWAT decreases by nearly
28.6% compared with the base SWAT System. The number
of SDCs reduces from 31 to 8 (i.e., 74.2% reduction). The
number of detections that are hardware recoverable (with
latency less than 100K instructions) improves slightly by
2%. The mean overhead due to invariant checking code is
low - 14% on an UltraSparcIIIi machine and only 5% on
an AMD Athlon machine. Moreover, this work is just a first
step using one simple style of invariants. These results show
that using likely invariants is a promising way to improve
overall reliability, at a low cost.

The rest of this paper is organized as follows. Section 2
provides a brief overview of likely invariants. In Section 3,
we describe the iSWAT System in detail, explaining how
we exploit the diagnosis module to detect false positives
caused by the invariants. Section 4 discusses the evaluation
methodology, the results of which are discussed and ana-
lyzed in Section 5. Related work is discussed in Section 6.
Section 7 draws conclusions and implications from our ex-
perience with the iSWAT framework and discusses future
work.

2. Invariant-Based Error Detection
In this section, we provide some background on likely pro-
gram invariants and then discuss the particular type of likely
invariants we use to detect permanent faults.

2.1 Likely Program Invariants

A program invariant at a particular program point P is a
property that is guaranteed to hold at P on all executions
of the program. Static analysis is the most common method
to extract such sound invariants. A combination of offline in-
variant extraction pass and static analysis, or theorem prov-
ing techniques, has also been suggested to extract sound in-
variants [20]. However, current techniques are not scalable
enough to generate sound invariants for real programs [20].
Also, they can not identify algorithm-specific properties that
are not explicit in the code (e.g. some inputs are always pos-
itive).

Likely Program Invariants are properties involving pro-
gram values that hold on many executions on all observed
inputs and are expected to hold on other inputs. However,
they are unsound invariants which may not hold on some in-
puts. Extracting likely program invariants is easier than ex-
tracting sound invariants as we do not need expensive static
analysis methods to prove program properties and can iden-
tify algorithm specific properties. The extraction can be done
either online or offline. In online version, invariants are ex-
tracted and used during program execution in the production
runs. Online extraction can present unacceptable overheads



to program execution, and may in fact be infeasible without
hardware support. The offline version, on the other hand, ex-
tracts invariants in a separate pass during program testing or
debugging, and these generated invariants can be used later
during the production runs. During the testing phases of soft-
ware development, the extra overhead of invariants extrac-
tion can be tolerated. This makes offline invariant extraction
a powerful method, allowing the use of more complex in-
variant mining techniques than would be feasible with on-
line methods. With compiler support, this “training” phase
can be done transparently at development time.

We can broadly classify likely program invariants into
three categories. Value-based invariants specify properties
involving only program values, and can be used for a va-
riety of tasks including software bug detection, program un-
derstanding and program refactoring etc [4, 11, 7, 12, 6].
Control-flow-based invariants specify properties of the con-
trol flow of the program, and have been used previously to
detect control-flow errors due to transient faults [30, 29, 5].
PC-based invariants specify program properties involving
program counter values, and have been proposed for detect-
ing memory errors in programs during debugging [33].

2.2 Range-Based Invariants

One of our main goals in exploring the use of invariants to
detect permanent faults is to improve the coverage of detec-
tion and reduce the number of SDCs. Since SDCs are typ-
ically caused by erroneous values written to output, we ex-
plore the use of value-based invariants to detect permanent
faults. The other two class of invariants can detect control-
flow or memory errors, which generally result in anomalous
software behavior that can be detected by the other detectors
in SWAT. For example, erroneous control-flow typically re-
sults in a crash which can be caught by the FatalTrap symp-
tom in SWAT [9]. In contrast, we expect value-based invari-
ants to capture deviations of values that do not result in any
significant change of program behavior to cause an applica-
tion or OS crash, but may still result in incorrect output.

As a first step towards using likely program invariants
for permanent hardware faults, we use a particular form of
value-based invariants known as range-based invariants. A
range-based invariant on a program variable x will be of
the form [MIN, MAX], where MIN and MAX are constants
inferred from offline training such that MIN ≤ x ≤ MAX

is true for all the training runs.
These range-based invariants are suitable for error detec-

tion for various reasons. These types of invariants can be eas-
ily and efficiently generated by monitoring program values.
They are also composable – the invariants can be generated
for each training input separately and can then be combined
together to generate invariants for the complete training set.
These invariants are also much easier to enforce within the
checking code compared to other forms of invariants as they
are simple and involve a single data value. In the ongoing
future work, we are exploring a broader class of invariants.

3. The iSWAT Detection Framework
We implement the above described range-based invariants
as an extension to the existing SWAT System [9] to build
the iSWAT system that uses likely program invariants as an
additional software-level symptom to detect hardware faults.

3.1 Overview of SWAT System

The SWAT system uses low-overhead software-level symp-
toms to detect the presence of an underlying hardware
faults, and exploits a firmware-assisted diagnosis and re-
covery module to recover the system from multiple sources
of faults [9]. While this paper targets permanent hardware
faults, our methods, similar to SWAT, also extend readily to
detect transient faults.

SWAT assumes a multi-core architecture under a single
fault model where a fault-free core is always available. The
system also assumes support for a checkpoint/rollback/re-
play mechanism and a firmware layer that lies between the
processor and the OS to monitor and control such mecha-
nisms.

Detection: SWAT uses four low-cost symptom-based detec-
tion mechanisms that require little new hardware or software
support. These mechanisms look for anomalous software ex-
ecution as symptoms of possible hardware faults. We briefly
describe them below; the details can be found in [9].

1. FatalTrap: Fatal hardware traps are those traps (caused
by either the application or the OS) that do not occur
during fault-free execution. In Solaris, some of the fatal
traps are RED (Recover Error and Debug) State trap,
Data Access Exception trap etc.

2. Abort-App: These indicate instances of a segmentation
fault or illegal operation, when the OS terminates the
application with a signal. In such cases, the OS informs
the detection framework that the application performed
an illegal operation, leading to a detectable symptom.

3. Hangs: Application and OS hangs are other common
symptoms of hardware faults [19]. SWAT uses a low
hardware-overhead heuristic hang detector, based on (of-
fline) application profiling to detect hangs with high fi-
delity.

4. High OS activity: In normal executions, on a typical invo-
cation of the OS, control returns to the application after
a few tens of OS instructions, except cases such as timer
interrupt or I/O system calls. As a symptom of abnormal
behavior, SWAT looks for instances of abnormally high
contiguous OS instructions to indicate the presence of an
underlying fault.

Diagnosis: After the fault detection, the diagnosis frame-
work is invoked to distinguish the source of the fault as a
software fault, or a transient fault, or a permanent fault. The
diagnosis component rolls back to the last checkpoint and
replays the execution on the original core. If the symptom



does not recur, it infers a transient fault and continues ex-
ecution. However, if the symptom recurs, it re-executes on
another core (assumed to be fault-free) to distinguish soft-
ware faults (in which case the symptom would most likely
reoccur on the fault-free core) from permanent hardware
faults (in which case the symptom would not occur). We
may need to do the replay multiple times on the two cores
to distinguish not-deterministic software errors. In the case
of a permanent fault, the diagnosis module also does micro-
architecture level diagnosis to identify the faulty microarchi-
tectural structure [10].

Recovery and Repair: For recovery, SWAT assumes some
form of checkpoint/restart mechanism that periodically
checkpoints the state of the system. Depending upon the re-
quirements, appropriate hardware checkpointing or software
checkpointing mechanisms, or a combination of both, can
be used to recover the system after detection. SafetyNet [28]
and Revive [18, 23] show reasonably low overhead for hard-
ware checkpoint/replay. In the event of a permanent hard-
ware fault, the component that is diagnosed as faulty can be
reconfigured or disabled.

3.2 The iSWAT system

The iSWAT system extends the above described SWAT sys-
tem to include the violation of likely program invariants as
possible symptoms that indicate the presence of a hardware
fault. These invariants are derived from “training” runs of
the application and the invariant checking code is embed-
ded into the application. iSWAT exploits the diagnosis and
recovery module of the SWAT system to detect and disable
false-positive invariants at run-time.

3.2.1 Generating Invariants and Invariant Checks

The iSWAT system leverages support from the compiler for
two distinct components: invariant generation and invariant
insertion. Both of these use the LLVM compiler infrastruc-
ture [8].

Invariant Generation: We use compile-time instrumenta-
tion to monitor program values during training runs in or-
der to generate likely program invariants. We can monitor
many different types of values, including load, store, return
and intermediate result values. For this work, we decided to
monitor only the store values as checking values stored to
memory has the most potential to catch faults, as all nec-
essary computations eventually pass their results to stores.
Also, monitoring only the stores helps us keep the overhead
of detection low. We monitor stored values of all integer
types (both signed and unsigned) of size 2, 4, and 8 bytes
as well as single and double precision floating point types.
We do not monitor integer stores of size 1 byte (character
data types), as they represent only a small range of values
and hence may be ineffective to detect faults.

We do the code generation for invariant generation in two
steps. In the first step, we use LLVM-1.9 with llvm-gcc-3.4
to generate the LLVM bytecode and run an instrumentation
pass to insert calls to monitor the store values. Then we gen-
erate a C program from the LLVM bytecode file through the
LLVM C back end. Finally, we generate SPARC native code
through the Sun cc compiler. We use the generated program
to create the invariants for each input separately, which we
then combine to form the final invariants in another offline
pass.

Invariant Insertion: The invariants generated by the offline
pass then need to be inserted into the code to check the val-
ues being stored. For this, we take the invariant ranges from
the generation phase and then insert calls to the invariant
checking code at the LLVM byte-code level through another
compile-time instrumentation pass. Then, as in the invari-
ant generation phase, we generate a C program from LLVM
bytecode through LLVM C back end and finally, use Sun cc
compiler to generate native code.

3.2.2 Handling False-Positive Invariants

False positives present a major short-coming for likely pro-
gram invariants as detecting them may incur high overheads
in the presence of permanent faults. For transient hardware
faults, relatively low-cost techniques such as pipeline flush
can help to tolerate false positives [24]. If the fault occurs
again after pipeline flush, the invariants will be updated and
this is done cheaply using hardware support. In contrast, for
a framework like iSWAT System that supports permanent
fault detection, more expensive rollback and replay on the
same and a fault-free core is needed to detect false positives.
Too many false positive detections may thus lead to exorbi-
tant overheads.

While training with too many inputs can potentially make
false positives rare, the ranges may become too broad ren-
dering the invariants ineffective for error detection. In our
framework, we propose to train with a set of inputs such that
the false positive rate is sufficiently low. In general, the num-
ber of false positives can be used to guide how many inputs
to use for training.

iSWAT leverage the existing diagnosis framework in the
SWAT system [10] to detect the remaining false positives at
run-time. In the event of an invariant violation, we follow
the full rollback and replay on the same and fault-free core.
If the violation occurs even on fault-free core, then it is a
false positive invariant(or a software bug). Since too many
rollback/replays due to false positives can cause large over-
heads, we disable the static invariants once it results in a
false positive during dynamic execution (Online updation of
invariants will add too much overhead for our software-only
technique). In this way, if the total number of static invariants
is I , the maximum number of rollbacks possible will also
be I , limiting the overhead incurred due to false positives.
Currently, the disable operation is done inside the invariant



i f ( ( v a l u e < min ) o r ( v a l u e > max ) ) { / / I n v a r i a n t v i o l a t e d
i f ( F a l s e P o s A r r a y [ I n v I d ] ! = t r u e ){ / / Not f a l s e p o s i t i v e

i f ( d e t e c t F a l s e P o s ( I n v I d ) = = t r u e ) / / Perform d i a g n o s i s
F a l s e P o s A r r a y [ I n v I d ] = t r u e ; / / D i s a b l e t h e i n v a r i a n t

} }

Figure 1. Invariant checking code template
checking code and does not need any extra hardware sup-
port. We maintain a table with one entry for each invariant
indexed by the invariant id to identify false positive invari-
ants. In the invariant checking code, the table entry is marked
to disable the false positive invariants from all later execu-
tions, if the invariant is detected as a false positive. Figure 1
shows a template of the actual invariant checking code.

The overhead caused by false positives in an invariant-
based approach depends on the number of rollbacks, which
in turn depends on the number of static false positive invari-
ants. The false positive results, presented in Section 5, indi-
cate that the overhead for our set of applications is negligible
compared to their runtimes.

4. Methodology
4.1 Simulation Environment

For the fault injection experiments, we used a full system
simulation environment comprising the Virtutech Simics full
system simulator [31] with the Wisconsin GEMS timing
models for the microarchitecutre and the memory [14] as
in [9]. These simulators provide cycle-acurate microarchi-
tecture level timing simulation of a real workloads running
on a real operating system (full Solaris-9 on the SPARC V9
ISA) on a modern out-of-order superscalar processor and
memory hierarchy (Table 1).

We exploit the timing-first approach of the GEMS+Simics
infrastructure [15] to inject microarchitecture-level faults. In
such an approach, GEMS and Simics compare their full
architectural states after each instruction and in case of a
mismatch GEMS state is updated with Simics state. This
checking mechanism was leveraged for our fault injection.
The faults are injected into GEMS’s micro-architectural state
and the fault is allowed to propagate. After a mismatch be-
tween Simics and GEMS, if the mismatch is found to be be-
cause of the fault, we copy the faulty architectural state from
GEMS to Simics, to make sure Simics follows the same cor-
rupted execution path as GEMS. Otherwise, the GEMS state
is updated as usual. When we find the architectural state is
corrupted, we say that the fault has been activated.

4.2 Fault Model

In the current work, we focus on permanent or hard faults.
The well established stuck-at-0 and stuck-at-1 fault models
as well as the dominant-0 and dominant-1 bridging fault
models are used for modeling permanent hardware faults
in this paper. The stuck-at fault models model a fault in a
single bit and the bridging fault model models faults that
affect adjacent bits. The dominant-0 bridging fault acts like

Base Processor Parameters
Frequency 2.0GHz
Fetch/decode/execute/retire rate 4 per cycle
Functional units 2 Int add/mult, 1 Int div

2 Load, 2 Store, 1 Branch
2 FP add, 1 FP mult, 1 FP div/Sqrt

Integer FU latencies 1 add, 4 multiply, 24 divide
FP FU latencies 4 default, 7 multiply, 12 divide
Reorder buffer size 128
Register file size 256 integer, 256 FP
Unified Load-Store Queue Size 64 entries

Base Memory Hierarchy Parameters
Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle
L2 (Unified) 1MB
L2 hit/miss latency 6/80 cycles

Table 1. Parameters of the simulated processor

Microarchitecture structure Fault location
Instruction decoder Input latch of one of the decoders
Integer ALU Output latch of one of the integer ALUs
Register bus Bus on the write port to the register file
Physical integer register file A physical reg in the integer register file
Reorder buffer (ROB) Source/dest reg num of instr in ROB entry
Register alias table (RAT) Logical → phys map of a logical register
Address gen unit (AGEN) Virtual address generated by the unit
FP ALU Output latch of one of the FP ALUs

Table 2. Microarchitectural structures in which faults are in-
jected.

a logical-AND operation between the adjacent bits that are
marked faulty, whereas the dominant-1 bridging faults act
like a logical-OR operation.

The microarchitectural structures and locations where the
faults are injected are listed in Table 2. For each structure,
a fault is injected in each of 40 random points in each ap-
plication (after the initialization phase in each application is
over). For each application injection point, we perform an in-
jection for each of the 4 fault models (two stuck-at and two
bridging faults). The injections are performed on a randomly
chosen bit in the given structure. This gives a total of 800
fault injection simulation runs per microarchitectural struc-
ture (5 applications × 40 points per application × 4 fault
models) and 6,400 total injections across all 8 structures.

After a fault is injected, we run the simulation for 10
million instructions. Note that the fault is maintained for the
rest of the 10M instruction window. For the small number
of runs where an activated fault is not detected within this
window, we use functional (full-system) simulation to run
the application to competition (as detailed simulation is too
slow to run to completion) for evaluating masking due to the
application, and SDCs. The functional simulation does not
inject any faults beyond the first 10M instructions, resulting
in the fault acting like an intermittent fault that is active only
in the 10 million instruction window. We believe that 10M
instructions is long enough that the simulation reflects the
behavior of permanent faults.



4.3 Fault Detection Techniques Used

We show the effectiveness of our invariant-based approach
by evaluating invariants in conjunction with the four low-
cost detection mechanisms built into the base SWAT system.
This is more realistic than studying only detections by invari-
ants as the other techniques are lower overhead (and need
very little hardware/software support) and will show the im-
pact of the new technique in any realistic system.

4.4 Fault Metrics

When the fault causes a corruption in the architectural state
of the processor, we say it is activated. If the fault is never
activated, we say the fault is architecturally masked. An
activated fault which is undetected, but does not cause any
corruption in the output produced by the application is said
to be application masked.

We used five metrics to evaluate the impact of the new
detection technique:

1. Coverage: The percentage of non-masked faults that are
detected in the 10M instruction window. We refer the
percentage of undetected faults as unknown-fraction.

2. Latency: The total number of instructions retired from
the first architecture state corruption (of either OS or
application) until the fault is detected by one of the above
techniques.

3. SDCs: The number of SDCs which result in corrupting
the output of the application.

4. False positives: The total number of false positive invari-
ants.

5. Overhead: The overhead of the invariant checking code
as a percentage of original execution time, measured in
fault-free run.

4.5 Applications

For the experiments, we used five SpecCPU 2000 bench-
marks – four SpecInt benchmarks (gzip, bzip2, mcf, parser)
and one SpecFP benchmark (art). For most of the other
SPEC benchmarks, we could not collect sufficient training
inputs, while we could not compile and run the others in our
simluator.

Previous work on invariants uses toy Siemens bench-
marks because many inputs are available for these bench-
marks [4, 22]. We use more realistic applications which
makes it much harder for us to obtain valid inputs for ex-
periments. Nevertheless, obtaining inputs will not be a prob-
lem in practice as developers test their programs on many
inputs during the testing phase. Invariant generation and in-
sertion can be easily done during testing through a compile-
time pass. The “test” and “train” input sets formed part of
our training set. Different techniques were used to generate
more inputs depending on the benchmarks. For three bench-
marks (gzip, bzip2 and parser), we collected random inputs
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Figure 2. Variation of False positives rate with different num-
ber of training inputs. The rate is <5% with 12 training sets,
motivating the use of 12 inputs for the rest of our experiments.

from external sources. For mcf, a script was used to gener-
ate random inputs, while for art, different input options were
used to generate invariants. Since the inputs were predomi-
nantly generated randomly, the inputs used for training were
significantly different from the reference inputs, which we
used for testing the false positives, coverage, latency, etc.

5. Experimental Results
In this section, we present our experimental results evaluat-
ing the effectiveness of using likely program invariants to de-
tect permanent hardware faults. All the injected FPU faults
were architecturally masked in all the applications, except
one floating point benchmark (art). So, we have excluded
the FPU unit results from the reported results, except as oth-
erwise noted.

We subject the same application binary (instrumented
with invariant detection) to faults under both the SWAT and
the iSWAT systems. We use the same binary in both cases to
obtain a valid coverage comparison between the two cases
as the behavior of faults (i.e., whether they are masked, or
detected, or become SDCs) depends on both static code lay-
out and dynamic instruction sequence. In the SWAT sys-
tem, since invariants are not monitored, the system ignores
the violation of any invariants and continues execution. The
iSWAT framework, on the other hand, invoked the diagnosis
module in the case of an invariant to determine false posi-
tives. If a false positive is detected, it just continues execu-
tion (in this case, the invariant will be disabled in the code),
otherwise a fault is detected. 2

5.1 False Positives

We first evaluate the effect of training with different training
sets on the number of false positives.

We define false positive rate to be the fraction of false
positive invariants as a percentage of total number of static
invariants. Figure 2 shows the variation of false positive rate
2 In a real system, iSWAT should check for false positives on every invariant
violation by invoking the rollback/recovery in diagnosis module. However,
since we have ref input available, we currently identify the false positive
invariants using an offline fault-free run and during faulty run, the diagnosis
module uses that information to detect false positives. In this way, we
effectively mimic a real system.



for our five applications running on the ref input, as the
number of training inputs is increased from 2 to 12.

As expected, false positive rate decreases as the number
of inputs increases. By 12 inputs, the rate of false positives is
less than 5% for all applications and 0% for three. This false
positive rate is sufficiently low for our purpose, motivating
us to use 12 training inputs for all of our experiments. In
previous work using Siemens benchmarks [4, 22], hundreds
of inputs were used for training. We find much lower num-
ber of training inputs suffice for permanent fault detection
with our approach, as our techniques can tolerate more false
positives.

The maximum number of static invariants in all applica-
tions was 231. Assuming each false positive detection has an
overhead of 1M instructions (conservatively computed con-
sidering overheads due to checkpoint/replay and context mi-
gration), the maximum overhead of false positive detection
on any input will be only 231M instructions, which is neg-
ligible considering the application runtimes. In practice, the
overhead will even be lower due to low false positive rates.

Interestingly, Figure 2 shows that after just four inputs,
only less than 10% of the invariants are false positives for
four applications. These results show that likely invariants
generated from many inputs will have sufficiently few false
positives to be usable for permanent fault detection.

5.2 Coverage

Here, we present the improvements in fault coverage achieved
by the iSWAT system (using 12 inputs for training in-
variants) over the SWAT system, evaluated using micro-
architecture-level fault injections.

Table 3 presents the improvements offered by iSWAT
over the baseline SWAT system to detect permanent hard-
ware faults. Each column shows the number of fault in-
jections that result in different outcomes (both the absolute
number and as a percentage of total number of fault injec-
tions) and the last column shows the unknown-fraction. The
first two columns represent faults that are masked by the
architecture (Arch-Mask), and the application (App-Mask).
The Unknown column represents the fraction of faults that
are not detected within 10M instructions in each of the sys-
tems. The rest of the columns represent faults that are de-
tected by each of the detection mechanisms in 10M in-
structions, using the detection methods described previously
(Section 3). We don’t show Abort-App in the table, as it does
not detect any fault.

Three points can be observed from this table. First, the in-
variant detection is catching nearly 5.8% of total fault injec-
tions. Second, the invariant detection is detecting some faults
that are not detected by the traditional symptoms which re-
sulted in unknowns in SWAT, thus resulting in a 28.6% re-
duction of unknown cases from 168 the in SWAT system to
120 in the iSWAT. Third, the iSWAT invariants detect some
faults (about 5% of total fault injections) that are caught
by the other symptoms in SWAT at a lower latency than

Microarchitecture structure SWAT iSWAT Reduction
Instruction decoder 0.7% 0.6% 16.7%

Integer ALU 7.8% 6.2% 20.5%
Register bus 4.97% 2.6% 48.3%

Physical integer register file 12.8% 8.5% 33.7%
Reorder buffer (ROB) 0.9% 0.9% 0.0%

Register alias table (RAT) 2.0% 2.2% -9.6%
Address gen unit (AGEN) 2.4% 1.3% 46.1%

Total 4.0% 2.8% 28.7%

Table 4. Reduction in Unknown category for each microar-
chitectural structure.

Unknown
Seg Other No

SDC
fault signals output

SWAT 168 102 7 28 31
iSWAT 120 85 3 24 8

Table 5. Breakdown of Unknown category after the comple-
tion runs. The “No output” category includes OS hangs, appli-
cation hangs and OS crashes.
the other techniques, thus number of detections by other
symptoms in iSWAT are lower compared to SWAT. This re-
sult leads to a small improvement in detection latency, as
we show in the subsection 5.4. The overall coverage of the
iSWAT system is 97.2%.

Detection using Invariants: In order to understand the ef-
fectiveness of these invariants to detect faults in different
micro-architectural structures, we categorize the unknowns
in the two systems in Table 4. For each structure injected
with faults, the table shows the corresponding percentage of
non-masked faults that result in unknowns in the SWAT, and
iSWAT system, along with the percentage reduction in the
unknowns. The “Total” row shows the aggregate numbers.

These results show that invariants are most effective for
detecting faults in the integer ALU, register databus, integer
register, and AGEN units. These correspond to faults that
affect store values, without significantly perturbing the con-
trol and data flow. Invariants are not effective for the decode,
ROB, and RAT units. Faults in these units perturb program
control flow, and do not directly affect values that the invari-
ants monitor. Faults in these structures are also very likely
to cause the invariant checking to be done incorrectly. For-
tunately, There are a very few remaining unknown cases in
these units. Faults in the RAT show an increased unknown
rate in the iSWAT system as some faults that are masked the
by the application in SWAT, are detected by the invariants in
iSWAT. These are real hardware faults which affect program
values, but are masked at the application level.

Invariants detect all the unknown cases for FPU Unit
faults. Thus the overall unknown-fraction decreases from
4.2% to 2.8%, if we include FPU unit. But, more floating
point applications are needed to draw any conclusions.

5.3 SDCs

A small fraction of faults still result in unknown outcomes
in the iSWAT system (2.8% of the non-masked faults) af-
ter 10M instructions. After 10M instructions of detailed tim-



Symptoms App-mask Arch-Mask Fatal-Trap Fatal-Trap Hang-App Hang-OS INV High-OS Unknown Unknown
-App -OS -fraction

SWAT(%) 293(5.2%) 1090(20%) 1252(22%) 1421(25%) 47(0.8%) 16 (0.3%) - 1305(23%) 168(3.0%) (4.0%)
iSWAT(%) 288(5.2%) 1090(20%) 1187(21%) 1357(24%) 29(0.5%) 15(0.3%) 325(5.8%) 1181(21%) 120(2.1%) (2.8%)

Table 3. Improvement in coverage of iSWAT over SWAT for permanent faults. The percentages are computed using total number
of fault injections as the baseline. Invariants are effective in catching faults that escape the traditional detection techniques in SWAT
and sometimes catching the same faults earlier, resulting in a reduced 2.8% unknown-fraction compared to 4% of the SWAT system.

ing simulation, we ran the unknown cases (for all structures
but the FPU) to completion in functional simulation mode
to evaluate how many of the unknown cases result in SDCs.
In this mode, faults are not injected during execution due
to lack of micro-architectural details in the functional sim-
ulator. Also, in functional mode, invariants checks are not
enforced by the iSWAT system as we do not have the diag-
nosis framework support to detect false positives caused by
invariants. Hence, our reported SDC numbers are conserva-
tive estimates of realistic SDC numbers.

We refer to the number of cases which result in the same
output as App-Mask and rest of the cases as unknown. Ta-
ble 5 shows the breakdown of the total number of unknown
cases according to the results after completion. The next two
columns show segmentation faults and application termina-
tions due to other signals. Executions that produce no output
due to an application hang, an OS hang or OS Crash (indi-
cated by timing out the execution after a long duration) fall
under the No output category. Finally, the cases that result in
undetected faults that corrupt application outputs are shown
under the SDC category.

Overall, the SDCs in the iSWAT system is significantly
lower than that in SWAT. The invariants reduce the SDCs by
74%, from 31 to 8. We consider the reduction in the SDCs
as the most important contribution of the invariants. Though
a few SDCs remain, we believe that more sophisticated in-
variants can make the SDC cases negligible. The number of
cases detected through other categories also decreases by 27
in iSWAT, which correspond to faults detected by invariants
before the application/OS crash through a signal or hang.

Analysis of SDCs: To do an in-depth analysis of why in-
variants don’t detect some of the SDC cases, we moved the
invariant checks to the simulator. In this way, we can observe
the monitored values and various other information, which is
not possible when the checks are in code.

To move the invariant checks into the simulator, we per-
form an instrumentation pass to store the monitored invari-
ant values to known memory locations. The simulator reads
the invariants ranges through a file. When it finds a store
to the known memory location, it can determine the corre-
sponding invariant from its memory address and perform the
bounds checking. Table 6 shows the key results, when the
checks are done in the simulator. Overall, there is a 35% re-
duction in unknown cases and 47% reduction in SDCs. We
observe a smaller reduction in SDCs compared to the Ta-
ble 5. So, the SDC results seem to be sensitive to static code

Unknown SDC
SWAT 164 32
iSWAT 106 17

Table 6. Results when invariant checking is done in simulator.

layout and dynamic instruction sequence, as they will deter-
mine the instruction where fault is injected and how the fault
affects the architectural state.

We analyzed the remaining 17 SDC cases by running both
the correct runs and fault injection runs and comparing the
monitored values. We made some interesting observations:

• In three cases out of 17 (all in mcf), very few invariants
are checked after arch-state mismatch. In fact, in one of
these cases, the faulty run has much fewer checks com-
pared to correct run, as the control flow diverges com-
pletely to some part of the application with much fewer
number of checks. In the other two cases, the correct run
also has very few invariant checks as the faulty runs.

• In two cases (in mcf,gzip) there are no mismatches of the
monitored values inside the 10M window. iSWAT can’t
detect them as there are no checks after 10M window.

• In most cases, control flow does not diverge significantly
- it diverges for a short period and then merges back.

• Irrespective of whether fault injection is in higher or
lower order bits, almost all the value mismatches in SDC
cases were in lower order bits. So, simple range-based
or control-flow invariants are unlikely to be effective for
these cases. In fact, most of the value mismatches were in
lowest 3 bits. We will need other types of invariants/de-
tectors for detecting mismatches in lower order bits.

5.4 Latency

Table 7 shows latency results for the faults detected by the
SWAT and the iSWAT systems, binned into various cate-
gories from under 1k instructions to under 10M instructions.
In order to perform a fair comparison, the numbers are pre-
sented as a percentage of the total number of faults detected
by iSWAT (i.e. the number of detection in the <10M case).

The number of faults detected at a latency of under 1k
instructions shows the largest increase of about 2% (the rest
of the numbers are cumulative). This shows that the latency
of detection of invariants is significantly lower than that of
the other symptoms. This increases the number of faults
that are amenable to simple hardware recovery. Although
the latency benefits offered by iSWAT are not substantial



Latencies <1k <5k <10k <50k <100k <500k <1M <5M <10M
SWAT 41.1% 47.0% 50.7% 78.7% 81.0% 87.0% 90.3% 95.7% 98.7%
iSWAT 43.1% 49.6% 53.4% 81.2% 83.3% 89.2% 92.7% 97.7% 100.0%

Table 7. Detection latencies for SWAT and iSWAT. The percentages are computed using number of detections in iSWAT with <10M
as baseline. The invariants increase the faults amenable to hardware recovery by 2%.
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Figure 3. Overhead of invariants on an UltraSPARC-IIIi
(sparc) machine and an AMD Athlon machine (x86).

so far, using more sophisticated invariants may improve the
effectiveness of iSWAT to reduce the latency.

5.5 Overhead

We evaluate the overhead of using invariants by running
the binary (with invariants checking) on fault-free hardware,
using two machines: Sun UltraSPARC-IIIi 1.2GHz machine
with 1MB unified L2, and 2GB RAM, and on an AMD
Athlon(TM) dual-core MP 2100+ machine with 256KB L2
and 1.5GB RAM. The Sun machine is referred to as Sparc
machine, and the AMD one as x86 machine in this section.

Figure 3 shows the overhead of using invariants checking
in the programs as a percentage over the baseline program
which has no invariants checking. The geometric mean of
the overheads is also shown for the two machines.

The sparc machine exhibits a higher overhead when run-
ning the invariants code than the x86 machine, with the aver-
age overheads being 14% and 5% respectively. In particular,
the overhead for the application mcf is significantly higher
in the Sparc machine (26%) than the x86 machine (2%). The
high overhead of the Sparc machine is likely due to its in-
ability to hide the cache misses and branch mispredictions
induced by these extra invariants. The x86 machine is able
to hide these latencies better, resulting in lower overheads.

In spite of these differences, the overheads produced by
these invariants checks are within acceptable overheads for
the increased coverage that they provide, motivating the
iSWAT system for increased resilience.

6. Related Work
There is a growing body of work on using software-visible
symptoms to detect hardware errors. A number of papers
propose the use of control path signatures to detect control-
flow errors [1, 5, 21, 29, 30]. Wang and Patel propose us-
ing branch mispredictions, cache misses, and exceptions as
symptoms of faults [32]. Most of this work focuses on tran-

sient faults or intermittent faults, and does not handle perma-
nent faults (the exceptions are discussed below). Permanent
faults are important because of the expected increase in phe-
nomena such as wear-out, insufficient burn-in, and design
defects [2]. In our previous work [9], we used simple soft-
ware symptoms to detect both permanent as well as transient
faults and we extend that system in this paper.

Dynamically detected program invariants (likely invari-
ants [4]), which are inherently unsound, have been studied
for a wide range of analysis tasks, including program evo-
lution [4], program understanding [7, 4], and detecting and
diagnosing software bugs [4, 6, 12, 33, 13]. The only work
we know of that uses likely invariants for online error de-
tection comprises three recent papers on transient hardware
fault detection [22, 24, 3]. Racunas et al. and Dimitrov et
al. extract the invariants using online hardware monitoring
whereas Pattabiraman et al. use ahead-of-time monitoring of
program runs (similar to our work). In all the cases, how-
ever, they can only use their invariants for transient errors
because they do not have any mechanism to distinguish false
positives from true hardware failures. (Racunas et al. and
Dimitrov et al. flush the pipeline, Pattabiraman et al. do not
suggest any concrete solution for false positives.) In contrast,
we can handle both transient and permanent faults.

Meixner et al. in the Argus project have proposed the
use of a program dataflow checker, combined with control
flow signature checking, functional unit checkers, a memory
checker and parity on all data transfer and storage units to
handle a wide range of faults [16, 17]. Their dataflow graph
and control flow signatures conceptually are invariants that
are encoded by the compiler in the binary and checked by
the hardware. Unfortunately, the technique does not work
with interrupts, I/O, etc. because these affect the control
flow. Some parts of the Argus solution may also incur in-
ordinate performance overhead. Coverage data is reported
only for a synthetic microbenchmark, thus the effectiveness
of the technique for real programs is not clear [16]. Finally,
the estimated area overhead is 17% of the core for Argus
– a fault in this part could lead to false positives. In con-
trast, we look at far cheaper detection techniques, combin-
ing software-extracted invariants with several other software
symptoms that can be observed at near-zero cost.

7. Conclusion and Future Work
Previously existing methods for detecting hardware faults
using software-level symptoms, such as SWAT [9], are very
promising because of their high coverage and low cost. Nev-
ertheless, these systems need additional detectors for achiev-



ing reliability levels that would be acceptable for most sys-
tems. In this work, we proposed and evaluated the first de-
sign (we know of) that uses likely program invariants for
detecting permanent faults. We used simple range-based
invariants on single variable values, in conjunction with
low-overhead symptom-based detection techniques already
available in the SWAT System. Our results show that likely
invariants can reduce the fraction of undetected errors from
4% to 2.8%, when used in conjunction with other symptom-
based detection techniques. Further, they reduce SDCs by
47% to 74.2%, which is important for any hardware fault
tolerance solution. We further showed that by leveraging the
diagnosis framework in SWAT, we could keep the overhead
caused by false positives to acceptable levels.

These range-based invariants form a first step towards us-
ing invariants to detect hardware faults. We are now inves-
tigating more sophisticated invariant schemes to further im-
prove the effectiveness of the iSWAT system. We also want
to monitor other program values and to design a strategy
to select the most effective values for monitoring to reduce
overhead. We would also like to evaluate the approach on
more benchmarks and real applications.
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