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Energy consumption has become an
important issue in the design of battery-oper-
ated mobile devices and sophisticated data
centers.1 The storage hierarchy, which
includes memory and disks, is a major ener-
gy consumer in such systems, especially for
high-end servers at data centers.2-4 Indeed,
recent measurements from IBM server sys-
tems show that memory can consume 50 per-
cent more power than processors,5 and a
recent industry report shows that storage
devices account for nearly 27 percent of a data
center’s total energy consumption.6

Low power modes are one way to reduce
energy consumption. Modern memory such as
RDRAM (www.rambus.com) lets an individ-
ual memory device transition into a range of
low-power operating modes. Similarly, many
disks also support multiple power modes.3

But while transitioning a memory chip or
a disk to a low power mode can save energy, it
can also degrade performance. For these low
power modes to be as effective as possible,
some control algorithm must decide which
power mode each device should be in at a par-
ticular time. Much work has focused on ener-

gy control algorithms for storage systems that
transition a device into a low power mode
when a certain usage function exceeds a spec-
ified threshold.2-4 These algorithms are diffi-
cult to use in real systems, however, because
designers must painstakingly and manually
tune threshold values, and even then a per-
formance guarantee is difficult. The sidebar
“Why Current Algorithms Don’t Always
Work” describes the issues in more depth.

To address these limitations, we developed
three algorithms: 

• a performance guarantee technique that
designers can use with any underlying
energy-control algorithm, 

• a performance-directed control algo-
rithm that periodically assigns a static
configuration to different devices by solv-
ing an optimization problem, and 

• another performance-directed control
algorithm that dynamically self-tunes
according to an optimal set of thresholds. 

Together, these algorithms represent a sig-
nificant step toward practical control
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algorithms for memory and disk energy con-
servation, especially for systems that require
service guarantees. Our algorithms eliminate
painstaking, application-dependent parame-
ter tuning, and users need not worry about
whether the underlying energy conservation
scheme will degrade performance by some
unpredictable, unacceptable value. 

To evaluate our algorithms’ effectiveness,
we compared them to various control algo-
rithms with and without performance guar-
antee for memory and disk, covering more
than 200 scenarios. (Because we do not have
the space to describe our algorithms in the
context of both memory and disk, we explain
them for memory only, although we present
simulation results for both memory and
disks.) In every case, the performance guar-
antee technique successfully held performance
degradation to the specified limit. Further, in
most cases, our two new performance-direct-
ed control algorithms saved more energy than
existing algorithms.

Providing a performance guarantee
We incorporated a new technique that

guarantees the underlying control algorithm
will not degrade performance beyond the
specified limit. This technique dynamically
monitors the performance degradation at run-
time and forces all devices to full-power mode
when the degradation exceeds the specified
limit. It is possible to combine this perfor-
mance-guarantee technique with any under-
lying control algorithm for managing memory
or disk power modes, including our self-tun-
ing and tuning-free algorithms. With this
technique, the user specifies an acceptable
slowdown, and the system seeks to minimize
energy within that constraint. Users can thus
make conscious, specific trade-offs of perfor-
mance and energy savings. Because the tech-
nique works with any energy-control
algorithm, both existing and new algorithms
can limit performance degradation, making
energy-saving schemes usable for workloads
that demand a certain performance level.

The acceptable slowdown is based on the
assumption that the user has been guaranteed
some base “best” performance assuming no
energy management, and can opt to save more
energy by accepting a slowdown relative to this
base performance. This acceptable slowdown,

Slowdownlimit, is the percentage of increase in
execution time relative to the base. The per-
formance guarantee technique uses this as
input and then ensures that the underlying
energy management algorithm does not slow
down execution beyond this acceptable limit.

The idea then is to track the slowdown and
force all devices to active when the observed
slowdown exceeds Slowdownlimit. The perfor-
mance guarantee algorithm thus has two key
tasks: estimate the actual slowdown directly
attributable to energy management and
ensure that the actual slowdown does not
exceed the specified limit.

Estimating actual slowdown
At each memory access, the memory con-

troller estimates the absolute delay in execu-
tion time attributable to energy management.
The delay estimation should be as accurate as
possible, but conservative—the estimated
delay must be greater than or equal to the
actual delay. 
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Why current algorithms don’t always work
Current control algorithms have two main limitations. The first is the need for manual

threshold tuning, which can be tedious and inaccurate. We found that reasonable threshold
values depend heavily on the system and application. For the memory subsystem, a set of
thresholds derived from competitive analysis1 showed a performance degradation of 8 to 40
percent when applied to six SPEC benchmarks. Our hand-tuning efforts also showed that
the best threshold values for a given application could cause high performance degradation
in others. For memory, the best threshold values for a 10 percent performance degradation
for the SPEC benchmark gzip gave 63 percent performance degradation when applied to the
parser benchmark. Even for the same application, the best threshold values can change for
different program phases and can depend on input data.

The second limitation is the lack of performance guarantee. Even if a system design includ-
ed thresholds tuned for an expected set of applications, no mechanism bounds performance
degradation for applications that deviate from the expected set. Our experiments show that
the potential performance degradation arising from an inappropriate set of thresholds can
be as high as several hundred percent. This type of unpredictable behavior or lack of a safe-
ty net is clearly a problem for all users, but it can be catastrophic for high-end servers in host
data centers that must honor service-level contracts. Such data centers are becoming increas-
ingly important consumers of high-end servers, and the ability to provide some form of per-
formance guarantee is crucial to their business model. Further, these high-end servers are
likely to reap the most cost savings from reduced memory and disk energy.

References
1. A.R. Lebeck et al., “Power Aware Page Allocation,” Proc. Int’l Conf. Architectural

Support for Programming Languages and Operating Systems (ASPLOS 00),
ACM Press, 2000, pp. 105-116.



A simple way to estimate delay is to add the
delay from energy management for each
access, which would be the transition time
from a low-power mode to an active one. This
simple way is too conservative, however,
because it does not consider the effect of over-
lapped accesses and other latency-hiding tech-
niques in modern processors (out-of-order
execution, prefetching, nonblocking caches,
and write-buffers, among others). For that rea-
son, we refined our slowdown estimation
method to consider some of the major sources
of inaccuracy.

First, our algorithm assumes that the
processor sees the delay from energy manage-
ment for a single load. In modern out-of-order
processors, the latency of a cache miss that
goes to memory cannot usually be fully over-
lapped with other computation. The addi-
tional delay from energy management simply
adds to the existing stall time and delays the
execution.

If the processor sends two loads to the
memory system in parallel, their latencies
overlap, therefore hiding some of the energy
management delay. Our major refinement to
the simple way of adding delay for each access
is to exploit information about overlapped or
concurrent requests. In Figure 1, accesses A
and B overlap. Suppose both devices are in
low-power mode and D1 and D2 are delays
that occur to accesses A and B, respectively.
The total delay in execution time is smaller
than D1 and D2. A tighter bound is D, the
result of subtracting the overlapped time from
D1 + D2. This idea extends to multiple over-
lapped requests. 

Further, most modern architectures can
hide the extra delay for writebacks and reads
attributable to store instructions unless there
is memory contention.

Enforcing the specified limit
A simple way to enforce the performance

guarantee is to ensure that the slack—the
amount of allowed execution delay that would
not violate the slowdown constraint—is never
negative. If slack becomes negative, the per-
formance guarantee algorithm disables the
underlying energy management algorithm,
pulling all devices to full-power mode. The
system continues like this until enough slack
accumulates to reactivate the underlying con-
trol algorithm. 

A simple method would be to update the
delay and slack at each access, but that
approach has two rather large limitations: It
must rely on a new tunable parameter—
“enough slack”—and it must check the actu-
al percentage of the slowdown against the slack
limit (at least one division and one compari-
son) after every access. These additional
checks incur too much overhead.

Our idea is to break the execution time into
epochs. An epoch is a relatively large time
interval over which we assume the application
execution is predictable; for our experiments,
the epoch was a million instructions.

At the start of an epoch, the algorithm esti-
mates the absolute available slack for the entire
epoch. Now, after each access, the algorithm
must check only the actual absolute delay at
that point in the epoch against the estimated
available slack for the entire epoch. If the actu-
al delay is more than the available slack, the
algorithm forces all devices to active power
mode until the epoch ends.

The algorithm can estimate the available
slack for the next epoch on the basis of the
specified Slowdownlimit and the execution time
of the next epoch without power manage-
ment. It predicts the latter as the same as for
the last epoch and bases its prediction on the
last epoch’s measured execution time and
slowdown estimation.

This estimation gives the fair share of avail-
able slack for the next epoch. To this, we add
a correction to account for any underuse or
overuse of available slack in the previous
epoch. Thus, if the previous epochs have not
used up their share of slack, the unused por-
tion carries forward, and the next epoch can
afford to use more than its fair share. Con-
versely, if the previous epoch used up too
much slack because, say, the algorithm
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Figure 1. Example of overlapped requests and refinement
of the delay estimation. 



incorrectly predicted the epoch length, the
next epoch will attempt to make up that slack.

The overhead of our performance guaran-
tee method consists of only one or two inte-
ger comparisons and fewer than four
arithmetic additions or subtractions per access.
The available-slack calculation requires some
multiplication, but because it occurs only once
each epoch, we can amortize this overhead over
a large interval. It is therefore negligible.

PS algorithm
Because we were interested in finding an

algorithm that was not threshold based, we
explored the possibility of using an algorithm
based on formal optimization. Our algorithm,
which we call Performance-Directed Static
(PS) because static algorithms4 inspired it, also
works on an epoch granularity. PS eliminates
the thresholds-based nature of most energy-
control algorithms by choosing a single power
mode, or configuration, for each device for the
entire epoch. Unlike the original static algo-
rithm, which uses a fixed configuration for all
devices throughout the entire execution, PS
assigns different configurations to different
devices. It also reassigns configurations when
a new epoch starts. 

Configuration choice
PS assigns a fixed configuration (power

mode) to a device for the entire epoch, and
the device transitions into active mode only
to service a request. Because it changes the
configurations at epoch boundaries according
to the available slack, PS can adapt to epoch-
scale changes in application behavior. It also
allows different configurations for different
devices, thereby exploiting the variability in
the amount of traffic going to different
devices. In essence, it has the flexibility to
apportion total slack across devices.

The PS algorithm chooses the configura-
tion for each epoch by mapping the problem
to a constrained optimization problem. By
applying standard optimization techniques,
PS can achieve a close to optimal solution for
fixed configurations through an epoch with-
out complex heuristics. 

For each device i, PS chooses configuration
Ci that maximizes the total energy savings sub-
ject to the constraint of the total available slack
for the next epoch. That is,

where E(Ci) and D(Ci) are a prediction of the
energy savings and the increase in execution
time of keeping device i in configuration Ci

in the next epoch. AvailableSlack is a predic-
tion of the slack available for the next epoch
(calculated in the same way as the perfor-
mance guarantee algorithm). N is the total
number of devices. 

In essence, PS is simply adding the delay
from each device to conservatively estimate
the total delay. Unlike the performance guar-
antee algorithm, PS cannot account for over-
lapped accesses among devices, since it does
not yet know which accesses will overlap in
the next epoch. Nevertheless, the performance
guarantee algorithm will carry any underused
slack to the next epoch.

These equations represent the well-known
multiple-choice knapsack problem (MCKP).
Although finding the optimal solution for
MCKP is NP-complete, we use a linear greedy
approximation algorithm to find an accept-
able solution.

For each device i, for each possible power
mode, the optimization must estimate the
energy saving and the delay for the next
epoch. For an accurate estimation, it would
need to predict the number and distribution
of the accesses in the next epoch.

We assume that the number of accesses in
the next epoch is the same as that in the last
epoch, since the epochs are relatively long, and
the number of accesses to each device changes
slowly over each epoch. In Figure 2, for exam-
ple, which shows the access count for the
SPEC benchmark vortex, the access rate
remains relatively stable (for the most part)
for each device. Although some bursty peri-
ods occur, where the access count changes
abruptly for a short time, resulting in sub-
optimal configurations, the performance guar-
antee algorithm compensates for this
burstiness. If PS underpredicts the access
count, and the power mode is too low, the per-
formance guarantee algorithm will force the
device to go active. Conversely, if PS overpre-
dicts the access count and the epoch uses up
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too little slack, the performance guarantee
algorithm will reclaim the leftover slack for
the next epoch.

To estimate the temporal distribution of
accesses, PS assumes that accesses to a given
device are uniformly distributed in time and
that accesses do not overlap. The assumption,
although simplistic, is strictly conservative.
The performance guarantee algorithm can
again partly compensate for some of the sub-
optimal results by reclaiming any unused slack
for the subsequent epoch.

PS can now calculate the contribution of
device i in power mode Pk to the overall exe-
cution time delay as

D(Pk) = Ai × [taccess(Pk) − taccess(Pactive)]

where Ai is the predicted number of accesses
to device i in the next epoch, taccess(Pk) is the
average device access time for power mode k,
and taccess(Pactive) is the average device access
time in active mode.

PS calculates the energy saved by placing
device i in power mode Pk in a similar way.

Overhead
At the beginning of each epoch, PS must

first evaluate D(Ci) and E(Ci) for all devices.
This requires 3MN multiplications and a sim-

ilar number of additions, where M is the num-
ber of power modes and N is the number of
chips (M < 5 and N < 16 in our system).
Because we use a linear greedy algorithm to
solve the MCKP, and because D(Ci) and E(Ci)
are monotonically non-decreasing, evaluation
requires 2MN computation steps, with each
step comprising one or two integer compar-
isons and one or two subtractions. PS invokes
such computation only at the beginning of
each epoch, so we can amortize this overhead
over the sizable epoch length (one million
instructions).

PD algorithm
Our Performance-Directed Dynamic (PD)

algorithm gained inspiration from previous
dynamic algorithms that put a memory chip
into lower power modes after being idle for a
certain threshold period.4 However, unlike
other dynamic algorithms, PD automatically
retunes its thresholds at the end of each epoch,
according to available slack and workload
characteristics. 

Specifically, the PD algorithm maps the
problem of threshold tuning to a constrained
optimization problem using the same equa-
tions as PS. The difference is that PD
describes configuration Ci for device i by
thresholds Th1, Th2, ... , ThM−1, where M is the
number of power modes and Thk is the time
that the device will stay in power mode k−1
before going down to power mode k. The
search space for PD is prohibitively large—
M−1 threshold variables, and each variable
could be any integer [0, ∞]. 

Given that we have no efficient solution for
this large space, we considered a heuristics-
based technique that uses a linear interpola-
tion and a simple feedback-based control
mechanism.7 The technique first curtails the
space of solutions by using the same set of
thresholds for all devices in a given epoch. It
then exploits the first-order dependence that
thresholds have on the slack available for the
epoch and on the number of accesses.

For a larger slack, devices can go to lower
power modes more aggressively, so thresholds
can be smaller. Similarly, for given slack S, lower
access counts allow for lower thresholds because
they cause a smaller total delay. Thus, PD seeks
to determine Thk as a function of available slack
and access count (for each k, 1 ≤ k ≤ M−1).
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Figure 2. Access counts per epoch for two memory chips with the SPEC
benchmark vortex. Each epoch is an interval of one million instructions.



Given that both available slack
and access count are pre-
dictable (as we showed earli-
er), we need only determine
PD’s Thk as a function of S for
a given access count.

Threshold heuristics
In general, if number of

accesses A is fixed, Thk(S) is
monotonically nonincreasing
with respect to available slack
S, as Figure 3 shows. To reduce
the computation complexity,
PD approximates Thk(S) using
multiple linear segments. It
first considers M key values of
S and approximates Thk for
each. These values are S =A ×
ti where 0 ≤ i ≤ M−1 (we
assume t0 = 0). This divides the
available-slack (S) axis into M
distinct intervals: [0; A × t1],
… , [A × tM−2, A × tM−1], [A × tM−1, ∞]. PD uses
the function’s approximated values at the vari-
ous A × ti’s to interpolate the values of the
remaining points in the corresponding inter-
vals. For Thk(S), PD determines these approxi-
mate values and interpolations in three steps:

• Consider key identified slack values A × ti,
where i > k. These values imply available
slack that is large enough to allow every
access to wait for the transition time tk.
We set the minimal threshold for Thk to
be the energy breakeven point described
in Irani, Shukla, and Gupta’s competitive
analysis8 so that the device can aggres-
sively go into a lower power mode. This
also provides the two-competitive prop-
erty—at most twice the energy as no ener-
gy management in the worst case.

• Consider the remaining identified slack
values A × ti, where 0 ≤ i ≤ k. For these
cases, the available slack is either not
enough or just barely enough for each
access to wait for tk. Therefore, we need
to be conservative about putting a device
in mode k—unless the device has already
been idle for a long time, it should not
be in mode k. PD thus sets threshold
Thk(A × ti) to be much larger than for
Thk(A × tk + 1); namely to (Ck−1) × tk, where

C is a dynamically adjusted factor.
• After determining the M key points, for

an available slack value S in any interval
between two key points, determine
value Thk(S) by linearly interpolating
between the interval’s endpoints. For
available slack values S in the interval 
(A × tM − 1, ∞), the value of Thk(S) is the
same as that at S = A × tM − 1.

PD uses feedback-based control to dynam-
ically adjust the constant value C at runtime.
If during the last epoch, the system does not
use up all its slack, the thresholds are too con-
servative. PD then reduces C to 95 percent of
its current value to reduce the threshold val-
ues. The result is that, in the next epoch, the
chip will go to lower power mode more
aggressively. If during the last epoch, the sys-
tem used up all its slack and the performance
guarantee algorithm had to force all devices
to become active to enforce the acceptable
slowdown, the thresholds are too aggressive.
In that case, PD doubles the constant to
increase the threshold values. 

Our experimental results show that this
dynamic threshold-adjustment scheme
works very well, and we never need to tune
the adjustment speeds in decreasing and
increasing C.
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Overhead
At the beginning of each epoch, for each

threshold Thk, PD must first compare the cur-
rent slack with the k key points to see which
segment of Thk(S) it should use. This involves
fewer than M − 1 comparisons for each Thk(S)
function, making the total comparisons fewer
than M2. PD then evaluates the linear func-
tions, which takes four to five multiplications,
divisions, and additions. The total computa-
tional complexity is thus smaller than M2 +5M
(M being number of power modes, which is
less than 5).

PD performs the threshold adjustment only
at the beginning of each epoch, so as we did
for PS, we can amortize its overhead over one
million instructions.

Memory results
We evaluated PS and PD (with the perfor-

mance guarantee algorithm) for memory
using the SimpleScalar simulator with an
aggressive out-of-order processor that has a
nonblocking two-level cache hierarchy and
RDRAM.9 We ran our evaluation for the six
SPEC benchmarks in Table 1.7

For comparison, we also implemented the
original static and dynamic algorithms that
Lebeck et al. describe.4 The abbreviations in
Table 1 are the original static (OS) algorithms.
For the original dynamic (OD) algorithms,
we use four settings for the required set of
thresholds. Lebeck et al. suggested that the
first set of thresholds, ODs, give the best E ×
D results for their simulation experiments
with SPEC benchmarks on a system close to
ours. The second set, ODn, also from the
same authors, is the best setting for their Win-
dows NT benchmarks on a system different
from ours. We include these to show the

thresholds’ dependence on application and
system. We calculated the third set, ODc, on
the basis of their E × D competitive analysis.4

Finally, we obtained the fourth set, ODt by
extensive hand tuning, to account for the dif-
ferences in the applications and in our system
and the one Lebeck et al. studied.4

For tuning, we started with the thresholds
described earlier and explored the space around
them to find the set of best thresholds for each
application—those that minimize energy
within a 10-percent performance degradation. 

Performance guarantee
As Table 1 shows, performance degradation

is strongly sensitive to the power mode select-
ed in the OS algorithms and to the thresholds
in the OD algorithms. For the OD algo-
rithms, thresholds tuned with competitive
analysis (ODc) and those tuned for the Win-
dows NT benchmarks (ODn) give unaccept-
able performance. This indicates that the
original algorithms require painstaking man-
ual tuning, which in turn depends heavily on
the application and system. It also underlines
the need for a performance guarantee.

We also enhanced the OS and OD algo-
rithms to provide performance guarantees.
For all the performance-guaranteed algo-
rithms, we varied Slowdownlimit from 5 to 30
percent. Table 2 shows the execution time
degradation for the performance guaranteed
algorithms. Across all 192 cases, the execution
time degradation stays within the specified
limit—evidence that our method for guaran-
teeing performance is indeed effective.

Energy savings
Figure 4 shows the energy consumption for

parser and bzip. The results for the other SPEC

44

MICRO TOP PICKS

IEEE MICRO

Table 1. Execution time degradation from energy management for original memory algorithms.

Execution time degradation                            Execution time degradation            
SPEC                (percentage) for static algorithms (percentage) for dynamic algorithms
benchmark OSs OSn OSp ODs ODn ODc
bzip 1 9 832 6 219 21
gcc 1 14 603 6 140 29
gzip 1 6 470 4 25 8
parser 4 33 2,013 9 835 40
vortex 2 22 1,633 5 466 22
vpr 2 18 1,635 3 505 12



benchmarks, published elsewhere,7 are simi-
lar. For OS+ and OD+, the figure shows the
results of the setting with the least energy con-
sumption for each application. Of all the algo-
rithms that provide a performance guarantee,
PD consumes the least energy in all cases.
Across all the benchmarks, PS does better than
OS+ in most cases,7 but is never able to beat
PD. PD and PS also compare favorably to the
algorithms without performance guarantee in
many cases. Overall, the results show that
incorporating available slack into the control
algorithm is effective in minimizing energy
consumption given a specified performance
degradation constraint. 

Disk results
To evaluate our algorithms’ performance in

disk energy consumption, we used Dynamic
Rotations Per Minute (DRPM), a multispeed
disk model3 that can service requests at a low
rotational speed without the need to transition
to full speed; however, the disk takes longer to
service requests for all accesses at slower speeds.
The performance-guarantee method and the
PS and PD algorithms for disks are analogous
to the memory case. Because no one has pre-
viously evaluated static algorithms for disks,
we defined OS and OS+ algorithms analogous
to the memory case: all disks stay at a fixed
speed to service requests. The variation of OS+
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Table 2. Execution time degradation for performance-guaranteed (+) memory algorithms,

including PS and PD.

Execution time  
degradation (percentage)
for given algorithms
Benchmarks OSs+ OSn+ OSp+ ODs+ ODn+ ODc+ PS PD

Slowdownlimit = 5 percent
bzip 1 5 5 3 4 4 4 4
gcc 1 4 4 3 4 3 3 3
gzip 1 4 5 3 3 3 3 3
parser 4 5 5 4 4 3 4 4
vortex 2 5 5 3 4 3 2 3
vpr 2 4 5 3 4 4 3 3

Slowdownlimit = 10 percent
bzip 1 9 10 6 8 7 8 8
gcc 2 8 9 6 7 6 7 6
gzip 1 6 9 4 7 6 6 6
parser 4 9 10 8 8 7 8 8
vortex 2 9 10 5 8 6 6 7
vpr 2 9 9 3 8 7 6 7

Slowdownlimit = 20 percent
bzip 1 9 19 6 17 14 16 16
gcc 1 14 17 6 14 11 15 12
gzip 1 6 18 4 13 8 11 12
parser 4 19 19 9 16 13 17 17
vortex 2 18 19 5 16 12 17 15
vpr 2 17 18 3 16 12 16 15

Slowdownlimit = 30 percent
bzip 1 9 29 6 25 20 24 24
gcc 1 14 26 6 21 17 23 19
gzip 1 6 26 4 19 8 18 19
parser 4 28 29 9 24 20 27 24
vortex 2 22 28 5 23 18 26 21
vpr 2 18 27 3 24 12 26 24



is OSr+ and represents a fixed r-thousand
RPM speed, where r = 3, 6, 9, or 12. The
dynamic algorithms, OD and OD+, are based
on an algorithm that Gurumurthi et al. devel-
oped;3 it dynamically transitions a disk from
one speed to another, according to changes in
the average response time and the request-
queue length. The algorithm has five parame-
ters; we explored these looking for ways to
minimize the overall E × D for OD. OD and
OD+ with this setting are OD1 and OD1+,
respectively. 

We also ran OD and OD+ at the parame-
ter settings that Gurumurthi et al. used, which
we call OD2 and OD2+. Our PD algorithm
dynamically adjusts two of these parameters,

the upper and lower thresholds for the change
in average response time. 

For our evaluation, we used both synthetic
and real system traces, with the widely used
DiskSim trace-driven simulator. The real sys-
tem trace is the Cello trace collected from HP
Cello File Servers in 1996.10 We generated the
synthetic traces, exponential and pareto, in way
similar to the approach of Gurumurthi et al.3

Figure 5 presents results for two of the traces.
It indicates that the original dynamic algorithms
(OD1 and OD2) can incur unacceptably large
application- and threshold-dependent execu-
tion time degradation (up to 39 percent across
all traces7). In contrast, our performance-guar-
anteed algorithm is effective in all cases and
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Figure 4. Memory energy consumption for bzip and parser with Slowdownlimit varied at 5, 10, 20, and 30 per-
cent from the case without energy management. For OD and OS (without performance guarantee), the
numbers above the bars are the percentage of execution time degradation.



never violated Slowdownlimit. PD and PS also
save more energy than the corresponding (tuned
best) original algorithms in most cases.

Thus, with little parameter tuning, these
two methods can effectively reduce energy
consumption while still providing a perfor-
mance guarantee. However, in contrast to
memory, across all traces,7 PS is generally com-
parable to or better than PD because far more
parameters are involved in dynamic algo-
rithms. Thus, a simpler algorithm like PS is
more beneficial for disks.

Both the PS and PD algorithms provide a
performance guarantee and use the slack

information that the performance-guarantee

algorithm generates to guide energy manage-
ment. For memory, PD consumes the least
energy of all performance-guaranteed algo-
rithms—up to 68 percent less than the best
OD+. Even compared to the best hand-tuned
OD (no performance guarantee), PD performs
well in most cases. For disks, PD does not per-
form as well because the number of parameters
involved is much larger than for memory, mak-
ing it too complex to self-tune all parameters
dynamically. Thus, the self-tuned algorithm
cannot compete with the hand-tuned one in a
few cases. Compared to all performance-guar-
anteed algorithms, PS cannot perform as well
as PD for memory, but it is the best or close to
the best in all but one case for disks.
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Overall, the results show that our algorithms
effectively overcome the limitations of current
energy-control approaches, providing perhaps
the first practical means of using the memory
and disk low-power modes in current com-
mercial systems and in designs that will even-
tually become the systems of the future. MICRO
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