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Abstract
Concurrency bugs are among the most difficult to test and diagnose
of all software bugs. The multicore technology trend worsens this
problem. Most previous concurrency bug detection work focuses
on one bug subclass, data races, and neglects many other important
ones such as atomicity violations, which will soon become increas-
ingly important due to the emerging trend of transactional memory
models.

This paper proposes an innovative, comprehensive, invariant-
based approach called AVIO to detect atomicity violations. Our
idea is based on a novel observation called access interleaving in-
variant, which is a good indication of programmers’ assumptions
about the atomicity of certain code regions. By automatically ex-
tracting such invariants and detecting violations of these invariants
at run time, AVIO can detect a variety of atomicity violations.

Based on this idea, we have designed and built two implementa-
tions of AVIO and evaluated the trade-offs between them. The first
implementation, AVIO-S, is purely in software, while the second,
AVIO-H, requires some simple extensions to the cache coherence
hardware. AVIO-S is cheaper and more accurate but incurs much
higher overhead and thus more run-time perturbation than AVIO-
H. Therefore, AVIO-S is more suitable for in-house bug detection
and postmortem bug diagnosis, while AVIO-H can be used for bug
detection during production runs.

We evaluate both implementations of AVIO using large real-
world server applications (Apache and MySQL) with six represen-
tative real atomicity violation bugs, and SPLASH-2 benchmarks.
Our results show that AVIO detects more tested atomicity viola-
tions of various types and has around 15 times fewer false positives
than previous solutions on average.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging–Diagnostics; B.8.1 [Hardware]:
Performance and Reliability–Reliability, Testing, and Fault-Tolerance

General Terms Languages, Reliability

Keywords concurrent program, atomicity violation, concurrency
bug, bug detection, hardware support, program invariant
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1. Introduction
1.1 Motivation
Concurrency bugs in multi-threaded and multi-process programs
are among the most difficult to test and diagnose of all software
bugs. As they are non-deterministic, requiring specific thread or
process schedulings to expose, they are hard to trigger. This frus-
trates both in-house testing and reproduction for postmortem diag-
nosis. In the real world, most server and high-end critical softwares
are multi-threaded or multi-process. Concurrency bugs in such ap-
plications have caused some of the most serious computer-related
accidents in history, including a blackout leaving tens of millions
of people without electricity [35].

Recent hardware advances further worsen the concurrency bug
problem. With SMT and CMP architectures becoming mainstream,
more and more multi-threaded applications are being written in
order to take advantage of the available processors. As a result, one
can expect an increasing number of concurrency bugs in the near
future. Therefore, good techniques to automatically detect these
bugs are greatly desired.

Most previous concurrency bug detection work focuses on one
subclass: data race detection. A data race occurs when two ac-
cesses, at least one of which being a write, from different threads to
the same memory location execute without proper synchronization.
Many dynamic detection tools have been proposed to address this
problem. They can be grouped into three categories: lockset bug de-
tection tools [6, 34], happens-before bug detection tools [7, 26, 28],
and various hybrid tools combining the two [27, 29, 43]. The lock-
set algorithm reports a data race bug when it finds that there is
no common lock held during accesses to a shared memory loca-
tion. Happens-before bug detection is based on Lamport’s happens-
before relation [19]. During concurrent execution, the happens-
before partial order of all memory accesses is maintained based
on synchronization activities. A data race bug is reported when two
conflicting memory accesses do not have a strict happens-before
relation. Different forms of happens-before algorithm have been
implemented in hardware [23, 30, 31] to overcome the overhead
problem (i.e. factor of 10 to 100 slowdowns) in software race de-
tection. The third class of tools combine the above two techniques
for better detection accuracy.

1.2 Limitations with Previous Approaches
While the above three approaches can effectively detect some con-
currency bugs in multi-threaded programs, they are far from pro-
viding a complete solution for detecting concurrency bugs due to
the following reasons:

(1) In many cases, what programmers want is atomicity, not
freedom from data races. Being data race-free does not necessar-
ily indicate correct synchronization. Many concurrency bugs would



1.1  void LoadScript (nsSpt* aspt) {
1.2     Lock (l);
1.3     gCurrentScript = aspt;
1.4     LaunchLoad (aspt);
1.5     UnLock (l);
1.6  }

1.7  void OnLoadComplete ( ) {
    /* call back function of LaunchLoad */
1.8      Lock (l);
1.9      gCurrentScript compile();
1.10    UnLock (l);
1.11 }

2.1  Lock (l);
2.2  gCurrentScript = NULL;
2.3  UnLock (l);

thread 1 thread 2

Mozilla Application Suite     nsXULDocument.cpp 

Figure 1. Being data-race free does not guarantee correct synchro-
nization. This is a real bug in the Mozilla Application Suite. It is slightly
simplified for illustration. When thread 2 violates the atomicity of thread
1’s accesses to gCurrentScript, the program crashes.

still occur even when all accesses are protected by correct locks and
have strict happens-before relations between each other. Figure 1
is a real bug example from the Mozilla Application Suite. As we
can see, gCurrentScript is a shared handler to the script being
processed. Thread one first sets this handler and launches the script
loading as an asynchronous event. After the loading finishes, thread
one will continue the script processing based on the previously set
handler. Meanwhile, thread two may nullify the handler.

This example does not have any data race because one common
lock protects every access to gCurrentScript. However, it still
contains a severe concurrency bug: an atomicity violation, which
will lead to a crash once triggered.

Atomicity, also referred to as serializability, is a property for
several concurrently executed actions, when their data manipula-
tion effect is equivalent to that of a serial execution of them 1.
For the Figure 1 example, the two parts of script processing from
thread 1 are expected to be atomic, i.e., never be unserializablly in-
terleaved by any modification to the gCurrentScript. Otherwise
thread 1 will consume the wrong script handler on line 1.9.

An important lesson learned from the above example is that, in
many cases, what programmers want is the atomicity of code seg-
ments, not necessarily freedom from data-race [12, 37, 42]. When
writing code, programmers tend to assume nearby operations in
one thread to be atomic. If an atomicity expectation is not satisfied
by the actual implementation, some executions will have unserial-
izable interleavings. This violates the programmers’ assumptions,
and can manifest as concurrency bugs. Using locks is just one way
to ensure atomicity (assuming that the locks are correctly placed),
but, as demonstrated in Figure 1, being data-race free does not guar-
antee proper atomicity.

(2) Data race is not a problem for future transaction-based con-
current programs, but atomicity violation still is. Recently there
is an emerging trend toward transactional memory programming
model via hardware or software support [1, 13, 16, 18]. Transac-
tions provide programmers with an interface to ensure atomicity.
Programmers using this model needn’t worry about data races be-
cause the underlying system and hardware automatically detects
conflicting accesses from different transactions and will roll back
one to resolve any conflict. In contrast, atomicity violations will
still happen in transaction-based programs when programmers do
not group operations that should be atomic into the same trans-

1 In databases, atomicity includes two properties: serializability and indivis-
ibility. But in general programming, atomicity is usually considered equiv-
alent to serializability

…
LOCK (G locks[b parent lock_index]);
b synch += 1;
UNLOCK (G locks[b parent lock_index]);
…
…
while (b synch != b num_children);
…

SPLASH2 FMM, interactions.C

…
Done (l) = TRUE;
…
…
while (!Done (r));
…
Done (r) =  FALSE;
...

SPLASH2 Barnes, load.C

(a) user-defined barrier synchronization (b) flag synchronization

Figure 2. User-defined synchronization mechanisms in SPLASH-2
benchmarks Barnes and FMM

action. For example, if the programmer divides the code segment
shown in Figure 1 into two separate transactions, the atomicity vi-
olation bug still remains.

(3) A data race is not always a bug. Many important synchroniza-
tion mechanisms are actually implemented using data races. Ex-
amples include barriers, flag synchronization, producer-consumer
queues, etc. Figure 2 gives two such examples from the SPLASH-
2 parallel benchmark suite [40], in which user-defined barrier and
flag synchronization are achieved via races on the shared variables
b→synch and r, respectively. Furthermore, sometimes program-
mers intentionally choose to allow a data race for better perfor-
mance. For example, in the Microsoft CLR library, performance
counter is regarded as inconsequential, so accesses to it are not pro-
tected [43]. Unfortunately, previous data-race detection solutions
cannot differentiate these benign races from true bugs.

(4) Most previous techniques rely on specific synchronization
semantics. Both the happens-before and lockset algorithms need
to be informed in advance about the synchronization primitives
used in the target program. Ignorance of non-lock based synchro-
nization primitives, such as barrier, thread create/join, or raising
the interrupt level, has caused many false positives in previous
work [6, 34, 43]. Worse yet is user-defined synchronization, as
shown by the examples in Figure 2, which is both common and dif-
ficult to recognize without prior knowledge. As a result, shared data
access protected by user-defined synchronization is an inevitable
source of spurious bug reports in all happens-before and lockset
based tools (also shown in our experimental results), reducing their
effectiveness for programmers.

1.3 State of the Art
Although the problem of atomicity violations has been known for
years, few good solutions exist to address this challenging prob-
lem. Most state-of-the-art techniques [11, 12] for detecting these
bugs require programmers’ annotations on atomic regions, which is
too time-consuming for programmers. Additionally, in many cases
programmers are not consciously aware of their atomicity assump-
tions, and therefore cannot provide accurate annotations.

Most recently, the SVD tool [42] pioneers the direction of atom-
icity violation detection without programmer annotation. It auto-
matically infers computation units, i.e. atomic regions, based on
data and control dependencies. SVD reports bugs when such re-
gions are interleaved by unserializable writes.

However, while SVD makes an inspiring start, it only looks at
a limited subset of atomicity violation bugs: unserializable inter-
leavings to atomic regions that start with reads on shared variables
and expand based on read-write or control dependencies. We will
show later in Section 2 that among all eight possible pairwise in-
terleavings, SVD is applicable for only two out of the four (50%)
unserializable cases. The bug in Figure 1 cannot be automatically
detected by SVD for exactly this reason. Finally, due to its com-



plex dynamic dependency analysis, SVD is implemented purely in
software and slows applications by up to 65 times [42].

1.4 Our Contributions
This paper makes three contributions in order to address the limita-
tions of previous works:

Contribution 1: Access Interleaving (AI) Invariant based de-
tection. We propose an innovative, comprehensive, invariant-based
approach called AVIO to detect a class of hard bugs: general atom-
icity violations. Our idea is based on the following two novel ob-
servations:

(1) AI Invariants: There exists a unique type of invariants in code
regions that are expected by programmers to be atomic (regardless
whether the implementation actually guarantees atomicity or not).
That is, during correct runs (runs that do not expose any concur-
rency bugs), two consecutive accesses from one thread to the same
shared variable are not interleaved by an unserializable access from
another thread. This invariant reflects the programmer’s intention
at these accesses: are conflicting accesses from other threads wel-
comed, forbidden, or do-not-care? If such an invariant, i.e. the pro-
grammers’ assumption, is violated, a concurrency bug will happen
(Section 2.1).

(2)Feasibility of AI Invariant Extraction: Large number of correct
runs is what we need to extract invariants. Concurrency bugs hap-
pen only in rare cases even with bug-exposing inputs, because their
manifestation requires specific access interleavings. In addition,
running a concurrent program multiple times, even with the same
input, generates many different access interleavings. Therefore, it
is feasible and relatively easy to obtain a collection of many dif-
ferent and correct access interleavings. AI invariants can then be
extracted from the correct runs (Section 2.3).

Based on the above two observations, the main idea of AVIO is
to automatically discover from correct runs those important code
segments that are assumed to be atomic by programmers, and then
to use such invariants to perform on-line detection of atomicity
violation bugs.

Contribution 2: design and trade-off study of software and
hardware implementations of AVIO. We design and build two
implementations of our idea: AVIO-H in hardware and AVIO-S in
software. AVIO-H requires simple hardware extensions to the hard-
ware cache coherence protocol and achieves negligible overhead
and little perturbation to application execution. In contrast, AVIO-
S is a pure software approach which is more accurate than AVIO-H
but incurs larger but still moderate overhead. Therefore, AVIO-S is
more suitable for in-house bug detection and postmortem diagno-
sis while AVIO-H can be used for bug detection during production
runs. Specifically, AVIO can be used for:

(1) Postmortem analysis: Programmers can use AVIO to diagnose
the root cause of software failures. Given a failure to track down,
a programmer can use AVIO to collect and compare AI invariants
during correct runs and buggy runs to check for possible atomicity
violation root causes.
(2) On-the-fly detection: Programmers can also use AVIO to auto-
matically extract AI invariants during in-house testing. Then these
AI invariants can be used during production runs to detect atomicity
violations and pinpoint code regions that lack atomicity protection.

Contribution 3: Evaluations with real-world server applica-
tions. We have evaluated the two implementations of AVIO using
six representative real atomicity violation bugs from two large
real-world server applications, the Apache HTTP Server and the
MySQL database server, and an extracted version of Mozilla, run-
ning on either real machines (for our software-only AVIO-S) or
the whole-system simulator Simics [22] (for our hardware AVIO-

H). Our experimental results show that, compared to previous ap-
proaches, AVIO has the following unique advantages:

• Detects a variety of atomicity violation bugs. Our compre-
hensive serializability analysis shows that, among eight possi-
ble access interleavings, AVIO can detect more cases of atom-
icity violations than previous algorithms. In addition, AVIO’s
detection also covers many bugs that are not addressed by data
race detection. Our experiments show that AVIO detects more
tested real atomicity violations of various types than previous
algorithms (SVD, happens-before and lockset).

• Oblivious to benign races. Since benign races are good races
desired by programmers (as shown in Figure 2), unserializable
access interleavings are allowed and even welcomed at such
places. During correct execution, these unserializable interleav-
ings will happen often, and therefore no AI invariants will be
observed at these accesses. As such, AVIO can easily differen-
tiate true bugs from benign races.

• Few false positives. As AVIO does not rely on synchronization
primitives and is oblivious to benign races, AVIO reports only
a few (on average 3-5) static false positives for our evaluated
applications. In contrast, previous methods have an average
of 51 false positives, which significantly undermines their bug
detection capability because programmers need to sift through
51 error reports in order to find one true bug.

• Requires no annotations or specifications. Unlike many pre-
vious approaches, our AVIO does not require programmers to
provide any specifications about synchronization primitives or
atomic region assumptions. Therefore, our idea applies for not
only multi-threaded programs using standard lock-based syn-
chronization, but also those using application-specific synchro-
nizations as well as future applications that are written in trans-
actional memory models.

• Non-stringent requirements for training data generation.
Training is important in all invariant-based approaches [14, 44].
Fortunately, employing the nondeterministic characteristic of
concurrent programs, i.e. different runs with the same input au-
tomatically have drastically different access interleavings, train-
ing data generation in AVIO has unique advantages over previ-
ous invariant-based approaches. Our results show that, running
less than 5 times for SPLASH-2 benchmarks and less than 100
requests for server applications are well more than enough to
generate a reasonably accurate set of AI invariants (see Sec-
tion 6.3 for a detailed sensitivity analysis).

• Imposes low overhead. AVIO, in particular the hardware im-
plementation AVIO-H, imposes very little (0.4–0.5%) over-
head, orders of magnitudes smaller than software-based concur-
rency bug detection tools. Our software implementation AVIO-
S incurs 15-42 times overhead, which is still lower than previ-
ous software-based tools such as SVD (65X) [42] and Valgrind-
lockset (> 200X).

2. AVIO Idea
Terminology definitions: For simplicity, unless otherwise men-
tioned, all accesses are to the same shared memory location. We re-
fer to the thread whose atomicity is interrupted as the local thread
and its accesses as local accesses or local reads/writes (note that
this does NOT mean a local variable). We refer to the thread with
the interleaving access as the remote thread and its accesses as re-
mote accesses or remote reads/writes. A serializable interleaving is
an interleaving between local and remote accesses that is equivalent
to a serial non-interleaving execution.



Thread 1               Thread 2
while (!flag){

flag = true; …

}This UNserializable
interleaving
happens 

in ALL runs

(b) Spin-flag example 
This code segment is designed for synchronization.
(the read access series SHOULD be UNserializablly interleaved)

write

read read

Thread 1                  Thread 2

temp = account
account = temp + 10

temp = account
account = temp + 10

Unserializable
interleaving

can NOT happen
in correct runs

(a) Bank account deposit example. 
Code segment is assumed to be serializable.

Figure 3. Example with an AI invariant (a) and WITHOUT an
AI invariant (b)

2.1 Access-Interleaving Invariance
The essence of atomicity violation bugs is no different than other
types of bugs: they are caused by a mismatch between the code im-
plementation and the programmer intention. Specifically, program-
mers assume that a sequence of shared variable accesses is atomic,
never interleaved by unserializable accesses, but the implemented
code does not guarantee this property and thus bugs emerge.

Programmers’ atomicity intention comes in different formats.
The most common and fundamental one can be represented by a
type of invariant that we refer to as an Access-Interleaving invari-
ant (AI invariant). Such an invariant is held by an instruction if
the access pair, composed of itself and its preceding local access to
the same location, is never unserializably interleaved. We denote
this instruction as I-instruction (invariant instruction) and the pre-
ceding access instruction as P-instruction (preceding instruction).
Note that with an AI invariant, it is perfectly OK to have interleav-
ings. Atomicity would be maintained as long as the interleavings
are serializable. Section 2.2 will further discuss interleaving serial-
izability.

Figure 3(a) gives a simple demonstration of an AI invariant us-
ing the classic banking account example. In this code, program-
mers assume that the read and modification of account are always
together and never be unserializably interleaved by a conflicting
remote access. Otherwise, an atomicity violation can result in pro-
gram misbehavior.

An AI invariant indicates programmers’ atomicity assumption.
Such assumption is the essence of concurrent execution correct-
ness. Atomicity assumptions, as in the banking account example,
are made during design and implementation by programmers who
are more comfortable with sequential thinking. Assumptions may
be enforced through locks, barriers, flags or other synchronization
mechanisms such as transactions. Poorly enforced atomicity as-
sumptions cause synchronization errors during some executions.

We should note that programmers do not assume all code re-
gions to be atomic, nor does AI invariant held for every shared
variable access instruction. Contrarily, some instructions often al-
low unserializable interleavings. For example, in cases like flag-
based synchronization implementation, programmers explicitly do

not want an AI invariant. Automatically differentiating code that
is or is not expected to have AI invariant would allow us to avoid
many benign races, which are the major source of false positives
in previous techniques. For example, Figure 3(b) illustrates syn-
chronization implemented using a flag variable. During execution,
no AI invariant will be observed at the flag read access of the
while loop, because unserializable interleavings happen in every
run. Such AI non-invariant matches the programmers’ intention in
this example at this position: an unserializable interleaving by a
remote access is required to ensure liveness.

Of course, AI invariant is not the only format of programmers’
atomicity assumption, but it is the most common and fundamental
one. Other assumptions involving multiple shared variables are
rarer and can be potentially extended from AI invariants. We will
discuss them in Section 7.

In summary, atomicity violation bugs are code regions that are
expected to be atomic but implemented as non-atomic. At run time,
serial execution or serializable interleavings definitely maintain the
atomicity; meanwhile, unserializable interleavings do NOT neces-
sarily violate correctness. Which part of code needs to be atomic
and serializable depends on programmers’ intentions and is well
indicated by AI invariants. Therefore, if we can automatically ex-
tract AI invariants, this knowledge can then be used to detect atom-
icity violation bugs by monitoring “unexpected” unserializable in-
terleavings in code segments where AI invariants should hold.

2.2 Serializability Analysis
Not all interleavings are unserializable, and serializable interleav-
ings do not lead to atomicity violation. In this section, we first ana-
lyze what interleavings are serializable and what are not. There are
totally eight ways that two consecutive local accesses to the same
shared variable can be interleaved by a remote access. Table 1 de-
scribes every cases, explaining why each case is serializable, with
equivalent serial accesses, or unserializable, with a bug example.

Among the eight cases, four (cases 0, 1, 4, 7) are serializable
interleavings while the other four (case 2, 3, 5, 6) are not. We have
an example bug for each unserializable case in which programmer’s
assumptions about atomicity is violated. For example, Figure 4
gives a real bug from the Apache httpd server whose root cause
is a case 2 unserializable interleaving. Figure 5 shows a real bug
example from the MySQL database server for case 5. Similarly,
case 3 and case 6 are exemplified by the examples shown early
in Figures 1 and Figure 3(a). But note that, as discussed in the
previous section, unserializable interleavings are not necessarily
bugs (Figure 3(b)) unless they violate programmers’ assumptions.

Above we get the unserializable condition, composed of four
cases, for single interleaving remote access. Extending it, we get
following similar four-case unserializable conditions with multiple
remote accesses to the same shared variable taken into account.
This condition will be used in the rest of the paper, guiding AVIO
bug detection (For illustration, interleaving remote accesses are put
in parentheses; ∗ denotes zero or multiple interleaving read or write
accesses; superscript i and p stand for one access and its preceding
access from the same thread):
• Case2: rp[∗wr∗]r

i, two local reads are interleaved by at least
one remote write, so they may have different views.

• Case3: wp[∗wr∗]r
i, a local read after write is interleaved by at

least one remote write. Due to this remote write, the read would
fail to get the local result that it expects.

• Case5: wp[rr∗]w
i, a local write after write is interleaved by a

remote access sequence that starts with read, making the local
intermediate result visible to a remote thread.

• Case6: rp[∗wr∗]w
i, a local write after read is interleaved by

at least one remote write. It makes the previous reading result
stale.



Interleaving Case # Description Serializability Equivalent Problems Bug Example
serial accesses (for unserializable cases)

readp two reads readp

readr 0 interleaved by a read serializable readi N/A N/A
readi readr

writep read after write writep

readr 1 interleaved by a read serializable readi N/A N/A
readi readr

readp two reads The interleaving write Apache
writer 2 interleaved by a write unserializable N/A makes the two reads have different views Figure 4

readi of the same memory location
writep read after write The local read does not Mozilla

writer 3 interleaved by a write unserializable N/A get the local result it expects Figure 1
readi

readp write after read readr

readr 4 interleaved by a read serializable readp N/A N/A
writei writei

writep two writes Intermediate result that is MySQL
readr 5 interleaved by a read unserializable N/A assumed to be invisible to other threads Figure 5

writei is read by a remote access
readp write after read The local write relies on a value from Bank account

writer 6 interleaved by a write unserializable N/A the preceding local read that is then Figure 3 (a)
writei overwritten by the remote write
writep two writes writer

writer 7 interleaved by a write serializable writep N/A N/A
writei writei

Table 1. Eight cases of access interleavings. All accesses are to the same shared variables. Besides read/write, subscript r denotes remote interleaving access; superscript
i and p denotes one access and its preceding access from the same thread. Note: we will differentiate general and invariant-related instructions by lower-case i/p and upper-case I/P.

thread 1
1.1  ap_buffered_log_writer()
1.2  {

…

1.3   s = &buffer[buf outcnt];
1.4   memcpy(s, str, len);

1.5   temp = buf outcnt + len;
1.6 buf outcnt = temp;
1.7   }

thread 2
2.1  ap_buffered_log_writer()
2.2  {

…

2.3    s = &buffer[buf outcnt];
2.4    memcpy(s, str, len);
2.5    temp = buf outcnt + len;
2.6 buf outcnt = temp;
2.7   }

Apache httpd-2.0.48    mod_log_config.c

Log buffer corrupted

Figure 4. A real bug from Apache httpd server with case 2 unserial-
izable interleaving: read-read interleaved by a write. Specifically, the read
accesses at lines 1.3, 1.5 are interleaved by line 2.6 write of thread 2. buf→outcnt is
read for index update after an append, however its value has already been modified
since line 1.3 read. As a result, the server log is corrupted. (there is also a potential
case 6 unserializable interleaving between 1.5 and 1.6)

thread 1
1.1  MYSQL_LOG::new_file ( )
1.2  {

…
//close old binlog

1.3 log_type = LOG_CLOSED

…
//open new binlog

1.4 log_type = local_log_type

1.5   }

thread 2
2.1  sql_insert ( )
2.2  {

…
//do table update

//log into bin_log_file
2.3    if (mysql_bin_log.log_type

!= LOG_CLOSED )
2.4     { //log into binlog }
2.5     else

//do nothing
2.6  }

mysql-4.0.12     log.cc, sql_insert.cc

security hole!

Figure 5. A real bug from MySQL database server with a case 5 un-
serializable interleaving: write-write interleaved by a read. Specifically,
the write accesses at lines 1.3, 1.4 are interleaved by line 2.3 read of thread 2. As a
result, thread 2 at line 2.3 reads an intermediate value produced by thread 1 and thinks
that the log file is already closed. As a result, thread 2’s database action is not recorded
in log, which creates a security back door.

2.3 Automatically Extract AI Invariants
A challenging question is how to obtain AI invariants, knowing
which code regions do not welcome unserializable interleavings.
In this section, we describe the high level idea used in AVIO. The
detailed process will be given in section 3.2.

Obviously, we cannot expect programmers to provide such in-
variants because atomicity violations usually occur in code seg-
ments where programmers are not consciously aware of their as-
sumptions. Similarly, we cannot use lockset analysis to extract AI
invariants without suffering from the same limitations (discussed in
Section 1) as previous lockset based algorithms.

To automatically learn a programmer’s intention, the best way is
to study the program’s behavior in correct execution: if a code seg-
ment is always serializable in correct runs (runs where no bug man-
ifests), it is probably assumed to be so always. In other words, we
can statistically “learn” a program’s AI invariants through training.
Specifically, to collect and analyze access interleavings from a set
of correct runs (training runs), we can see which shared accesses
(such as the one in Figure 3(b)) allow unserializable interleavings,
and which shared accesses never have unserializable interleavings.

The feasibility of the above idea depends on how well the
training can be: (1) How to ensure training is dominated by correct
runs (correctness issue)? (2) How to get sufficient different training
samples (sufficiency issue)? These two issues are critical in all
invariant-based techniques [9, 14, 44]. Fortunately, two unique and
“notorious” properties of concurrency bugs make training in AVIO
easier than general invariant training. In other words, we have
turned the negative “troublesome” bug characteristics into positive
characteristics in detecting these types of bugs.

First, the correctness issue is addressed by two facts: (1) Con-
currency bugs manifest very infrequently, even with bug-exposing
inputs. Their manifestation usually requires specific access inter-
leaving, a notorious feature that makes concurrency bug very hard
to reproduce for postmortem diagnosis. Practical experience with
real bugs shows that, even with bug-triggering inputs, usually it still
takes hundreds, thousands, or more of repeated executions to trig-
ger a bug. As a result, we can easily get correct-dominated training.
(2) Existing infrastructure and research in software testing can be



leveraged to label training runs as correct or incorrect. In particu-
lar, according to a previous work [5], most concurrency bugs are
fail-stop. Furthermore, software testers usually have various meth-
ods (beyond crashes or hangs) during in-house testing to determine
the correctness of test runs. Additionally, assertions and automati-
cally extracted predicates [20] can further help to filter out incorrect
training runs. The AI extraction algorithm can also be designed to
tolerate a small percentage of unfiltered incorrect training runs.

Second, the sufficiency issue is addressed by the fact that
concurrent execution is non-deterministic due to the underlying
thread interleaving. As we all know, both multi-processor execution
and operating system thread scheduling have a lot of randomness.
As such, even with just one input, we can easily get a large number
of distinct access interleavings. For example, in our experiments,
100 runs of a SPLASH-2 benchmark with just one input always
generate 100 different traces.

Benefiting from the non-determinism, training in AVIO’s post-
mortem analysis (usage model 1) is very easy. Just running the pro-
gram with the bug triggering input many times, and we will get suf-
ficient access-interleaving training results. This is a big advantage
over traditional invariant-based tools. As for on-the-fly-detection
(usage model 2), the capability of AVIO is related to its path cov-
erage, which is a problem for all dynamic bug detection tools, not
only for invariant-based techniques. In AVIO, if the training does
not cover a particular code block, no AI invariant is available there
and false negatives may occur. We need to rely on a reasonable
branch coverage of in-house testing suite and AVIO can be ex-
tended to actively learn new invariants during detection. Value cov-
erage is less of a concern, because AI invariants are associated with
instructions and interleavings, not with data addresses or values.
With a different input, an instruction may access data with a dif-
ferent value, but the programmer’s assumption about the desired
atomicity associated with this instruction remains the same.

The above analysis indicates it is feasible to extract AI invariant
by training. Our experiments further validate this. All the real
server bugs detected by AVIO are based on training with just one
input and fewer than 100 training requests. The training input value
is also flexible, as indicated in our experimental input sensitivity
study (section 6.3).

3. AVIO Algorithms
AVIO automatically extracts AI invariants from off-line testing
runs, and then detects potential violations to the extracted AI in-
variants during monitored runs. As the AI invariant extraction al-
gorithm is based on the detection algorithm, we will first describe
the detection algorithm and then present the extraction algorithm.

3.1 Detection Algorithm
Suppose that we already have a set of AI invariants, which gives
a list of I-instructions. Then an AI invariant violation is an unse-
rializable interleaving between an I-instruction and its preceding
local access instruction (P-instruction) to the same shared variable.
Based on our serializability analysis in section 2.2, to detect any
such unserializable interleaving, the detection process can simply
follow the binary decision diagram in Figure 6, which summarizes
all the four unserializable interleaving cases.

The decision diagram in figure 6 clearly shows that AVIO needs
four pieces of information to tell unserializable interleavings from
serializable ones. These four pieces of information are: access
type of the current instruction (i.e. I-instruction Type); access type
of the preceding local instruction to the same memory location
(P-instruction Type); interleaving remote write information and
interleaving remote read information. With these four pieces of
information, AVIO can easily detect violations to AI invariants. We
will show later in Section 4 how these four pieces of information
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Figure 6. AVIO bug detection procedure (This diagram can be better
understood when referring to table 1)

are collected in both our hardware and software implementations
of AVIO.

3.2 Extraction Algorithm
The goal of the AI invariant extraction, referred to as AVIO-IE, is
to extract AI invariants from multiple correct runs.

Interestingly, AVIO-IE can be easily implemented by leveraging
the AI invariant violation detection process. Specifically, the ex-
traction process is a series of correct runs with the AVIO detection
enabled. As shown in Figure 7, initially the set of AI invariants,
AISet, includes all global memory accesses in the target program.
Then it runs the program on top of AVIO multiple times. At the end
of each run, AVIO reports “violations” to the current AISet in this
run. A violation at an instruction i indicates that an unserializable
interleaving is encountered in the current correct run (labeled by
the testing oracle). Therefore, there is no true AI invariant at i, i.e.
i should be removed from AISet. This process will repeat many
times until AISet remains unchanged for the last m runs, where
m is adjustable. In Section 6, we will show sensitivity results of
the number of training runs. Finally we filter out never-executed
instructions and return AISet.

To tolerate a small percentage of incorrectly labeled training
runs (i.e. an incorrect run is labeled as correct), AVIO-IE can in-
troduce an invariant filtering threshold T . Only when an invariant
is violated in more than T training runs that pass the testing ora-
cle, this invariant is removed from the AISet. This technique can
avoid some actual invariants being filtered due to some incorrectly
labeled training run, but at the cost of potentially more false posi-
tives in violation detection. So the best way is for programmers to
adjust the threshold parameter based on the accuracy of their testing
oracles as well as their false positive tolerance level.

AVIO-IE (ProgramBinary P)
{

AISet = all global memory accesses in P;
while (AISet is changing in the last m iterations) {

ViolationSet = RunOnceWithViolasDetection (P, AISet);
AISet = AISet – ViolationSet;

}
AISet = AISet – NonTouched Instructions;

}

Script

Figure 7. AVIO’s process of extracting AI invariants.

4. Two AVIO Implementations
To study the trade-offs between hardware and software, we imple-
ment our AVIO idea and algorithms in two different approaches: a
software-only approach AVIO-S and a hardware-assisted approach
AVIO-H. As the AI invariant extraction is done during in-house



testing, it is less overhead critical. Therefore, extraction is imple-
mented based on AVIO-S.

4.1 Hardware AVIO (AVIO-H)
4.1.1 AVIO-H Overview
The hardware implementation, AVIO-H, takes advantage of exist-
ing cache coherence protocol and achieves negligible overhead and
little execution perturbation with simple hardware extensions as
shown in Figure 8. AVIO-H currently assumes a CMP machine
with a physical-address indexed private-L1 cache and a unified-
L2 cache hierarchy, using an invalidation-based cache coherence
protocol. Extending it to other multiprocessor architecture such as
SMP and other cache coherence protocols is relatively straightfor-
ward, especially since our detection algorithms described in Sec-
tion 3 are not implementation specific.

DG

INV

AVIO Extension (2 bits)

PIDGL1 cache line (data, tag, state, etc.)

INV Invalidate bit. Provided by underlying architecture.

Downgrade request bit, belong to AVIO extension. 

PI Preceding access Instruction type bit, belong to AVIO extension.

Figure 8. AVIO-H’s extension to each L1 cache line

First, AVIO-H appends each L1 cache line with two new access-
information bits. These new bits, together with the existing in-
validate (INV) bit used by the cache coherence protocol, provide
enough information to perform the AVIO detection algorithm de-
scribed in Section 3:

• PI bit (Preceding access Instruction bit): This bit provides the
“Type of P-instruction” information. It is set to 1 at each local
read to the corresponding cache line and is unset at each local
write.

• DG bit (Downgrade bit): This bit provides information to find
out whether the previous local write’s result has been read by
a remote thread. Interestingly, in existing invalidation-based
cache coherence protocols, such an action is associated with
a Downgrade request sending from the reader to the recent
writer. Therefore, AVIO-H just needs to set the DG bit upon
a Downgrade request and unset the bit after each local access.

• INV bit: This bit already exists in current cache coherence
hardware. It provides information about any “interleaving re-
mote write” after the previous local memory access. In exist-
ing invalidation-based cache coherence protocol, interleaving
remote writes will invalidate all other L1 caches’ copies. There-
fore, AVIO-H just needs to check the INV bit to see whether a
remote write has happened.

Second, the hardware cache coherence protocol is extended to
support the above information bits and violation detection. Finally,
we add special instruction encodings for I-instructions (reads and
writes) and a special bit in the L1 cache access command to indicate
when a memory instruction is an I-instruction. Using these exten-
sions, we can easily implement the detection protocol in hardware
as shown in figure 9.
Complexity and Overhead Both the state maintenance and bug
detection in the AVIO-H have very simple logic, as shown in fig-
ure 9. Interestingly, further studying the detection protocol indi-
cates that unserializable interleaving only happens when the origi-
nal cache coherence protocol cannot use the local copy and needs
to contact L2 to get the most-up-to-date copy and/or exclusive
write permission. Therefore, AVIO-H’s detection process is trig-

1

0

write

Type of 
THIS

instruction

read
PI

INV DG
1 0

1

BUG BUGpass pass

0

At Invalidate Request
set INV

At DownGrade Request
set DG

At normal L1 access
update PI, unset DG, INV

At L1 miss from an I-Instruction
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At an I-Instruction

(a) AVIO-H state maintenance (b) AVIO-H detection protocol

Figure 9. AVIO-H state maintenance and bug detection ( This is a hard-
ware version of figure 6)

gered only when an I-instruction cannot be satisfied by its local L1
cache.

The whole detection phase has small space overhead and negli-
gible time overhead. The extra space is just two bits per L1 cache
line, less than 0.4% overhead. Because the invariant check is con-
ducted only when an I-instruction has to go to the shared L2 cache,
the check is not in the critical path–the simple detection protocol
can be hidden by the L2 cache access latency. Only when a bug is
found, AVIO-H needs to impose overhead recording it.

4.1.2 Design Issues of AVIO-H
After describing AVIO-H’s basic mechanism, this section discusses
some design issues. Some of these issues have no effect on AVIO-
H, while some others can, in rare cases, affect AVIO-H’s accuracy
in ways similar to previous hardware data race detectors. All these
issues are specific to our hardware implementation, and do not
affect our software implementation (described in Section 4.2).

Recording and reporting atomicity violations After detecting
an AI invariant violation, AVIO-H marks the I-instruction in the
reorder buffer and sends a signal when this instruction retires.
Therefore, no bug is reported for speculative instructions. AVIO-H
supports two bug reporting options: either break the execution with
an exception, or only record the I-instruction’s PC and accessed
address to a memory location specified by the software.

Cache line displacement and context switch Recent access his-
tory of a cache line may be lost when it is displaced. This problem is
also encountered in most previous hardware race detectors [30, 31]
and was simply ignored because it only results in false negative in
very rare cases. This is especially true for AVIO because AI in-
variants focus on two consecutive accesses to the same memory
location from the same thread. Intuitively, these two accesses are
nearby (which is why programmers forget to protect them in the
first place) and therefore the probability for them to be interleaved
by a displacement of an involved cache line is very small. In ad-
dition, we can always postpone displacing such a cache line by
first evicting a private (e.g. a stack) cache line. Similarly, context
switches can also create some false positives in AVIO-H as well as
most previous hardware race detectors, and its probability is also
very low for similar reasons. These issues can be addressed in the
future by thread-id tagging or employing directory as victim buffer
in directory-based cache coherence protocol.

Load-store queue and write-coalescing Some read access may be
invisible to AVIO-H if they hit the load-store queue. Fortunately, if
this access is an I-instruction, a hit in load-store queue definitely
indicates no remote interleaving between this read and previous lo-
cal access, so it is perfectly fine that AVIO-H is not checking this
“invisible” access. For the same reason, write-coalescing also has
no effect on bug detection. But if this access is a P-instruction right
before an I-instruction, it can lead to a two-fold effect. On the pos-



itive side, AVIO-H may thus be enabled to detect atomicity viola-
tion to a larger code region, since it mistakes an access sequence
wP1rP2rrw

I by wP1rrw
I , with rP2 hit the load-store queue and

invisible to L1 cache. On the negative side, wP1rP2wrw
I may be

mistaken as wP1wrw
I , and AVIO-H may miss the bug. In sum-

mary, in most cases, the load-store queue has no effect; in a very
small percentage of cases, it may either help or harm AVIO-H in
detecting some bugs. Note that similar issues are faced by previous
hardware race detectors. Previous solution forces global memory
accesses to go through the lower memory hierarchy [32]. Since this
issue rarely has bad effect on AVIO-H, we did not choose this so-
lution in our current prototype.

Strict/weak consistency model, out-of-order access and execu-
tion issues Different memory consistency models may cause dif-
ferent memory access orders for the same concurrent program.
However, it does not affect the bug detection. No matter what the
access order is, what AVIO-H sees is the actual order executed on
hardware. Out-of-order execution similarly has no effect on AVIO-
H. The only exception here is when prefetching results are finally
discarded and the access interleaving matches case 5, which is a
low probability event, there may be some false positives.

False sharing due to cache line granularity In our design AVIO-
H uses a cache line as the unit for information keeping and bug
detection. It may introduce some false sharing, an issue also faced
by previous hardware race detectors [31]. It can be solved by
simply using a smaller granularity (e.g. word) at the expense of
increasing space overhead and bus traffic. This problem can also be
alleviated by using profiling to find false sharing and then using
a compiler to automatically add paddings. Such processes have
already become a standard optimization to reduce unnecessary
cache coherence traffic and cache misses for performance reasons.

Other sources of cache line invalidation In AVIO-H, we use each
cache line’s INV bit to record remote write access information. In
addition to cache coherence invalidation, this bit can also be set by
other sources such as DMAs. This does not interfere AVIO-H’s bug
detection capability. Atomicity violation would still be correctly
reported even though it may be from a DMA operation.

Support for SMT Our current AVIO design is based on CMP/
SMP. To support SMT, AVIO needs a simple extension: tag L1
cache lines with thread-ids.

Compatibility with certain processor and cache coherence pro-
tocol The cache management policy required by AVIO is general:
an invalidation-based cache coherence protocol. However, there
may be some real processor that is incompatible with AVIO’s cur-
rent prototype. In that case, AVIO needs simple extension to the
cache coherence protocol to get some bug detection required infor-
mation, such as downgrade information.

4.2 Software AVIO (AVIO-S)
To study the trade-offs between efficiency and accuracy, we also
implemented the AVIO techniques purely in software.

Like AVIO-H, the key task of AVIO-S is to collect and main-
tain access information required by the AVIO detection protocol.
Specifically, for all global memory, AVIO-S maintains the most re-
cent local and remote access history information, and then uses it
to check for possible violations at I-instructions. In software, var-
ious access information is collected by binary instrumentation at
every global memory access and maintained in an access-table data
structures. Each thread has an access-table, holding the type infor-
mation of its latest access to each global memory location. There is
also a global access-owner-table, holding the identifier of the thread
that most lately wrote to each global memory location. At each
memory access from I-instruction, the P-Instruction Type can be

obtained from the local-access table; and the information about re-
mote write and read can be inferred and bookmarked by comparing
local thread-id with the owner-id.

Once an atomicity violation is detected, as in AVIO-H, AVIO-
S will either stop the program and raise an exception, or log all
the debugging information and continue the execution. Debugging
information, such as the address of the three involving instructions,
P-instruction, I-instruction and the remote interleaving access, can
be recorded in the global and local access tables.

4.3 Trade-offs between AVIO-H and AVIO-S
AVIO-H and AVIO-S each have their own advantage and disad-
vantages. First, AVIO-S is cheaper because it does not require any
hardware extensions. Second, AVIO-S is also more accurate be-
cause: (1) AVIO-S’s detection granularity is very flexible, ranging
from a byte to a cache line with a word as default. Therefore, AVIO-
S suffers much less from the false sharing problem than AVIO-H.
(2) Since AVIO-S monitoring and detection are done by instru-
mented code, it is not affected by the cache displacement, load-
store queues, context switches, or other hardware-related issues.

However, as a trade-off, AVIO-S incurs much higher overhead
and run-time perturbation, which comes from two sources. The
first is monitoring overhead–each global access is instrumented to
update the access information of the accessed data. The second is
detection overhead. At each I-instruction, AVIO-S needs to detect
possible violations to the corresponding AI invariant. To reduce
overhead, hashing is used for quick locating the information tables.
Since the global owner-table can be accessed by all threads, spin-
locks are used for fast synchronization. All these optimizations are
helpful in reducing overhead. However, as we will show in the
experimental results (section 6), even though AVIO-S’ performance
is better than several other software concurrency bug detectors, the
overhead is still much higher (4 orders of magnitude) than AVIO-
H. Even if static analysis may further optimize AVIO-S, it is still
too hard to reach the level to fit for production run as AVIO-H. In
addition, the bug detection capability may also be affected by the
larger execution perturbation from AVIO-S.

5. Evaluation Methodology
Our software implementation, AVIO-S, is implemented using the
PIN binary instrumentation tool [21] and runs on a real machine
with four Intel Pentium processors. Our hardware implementation,
AVIO-H, is implemented on the Simics [22] whole system simula-
tor, based on the SimFlex timing model [15] because it can run a
real OS on the top, allowing us to run real-world server programs in
a realistic simulation environment. Specifically, we use a full sys-
tem, cycle-accurate, x86 simulator that models a 4-core CMP in-
order x86 machine. Non-memory operations have a fixed one cycle
latency and memory operations go through the cache and memory
hierarchy. The parameters of the architecture are shown in Table 2.
With AVIO-H, we assume a 0.4% extra slow down on whole chip
frequency due to the 0.4% larger L1 cache and 500 cycle penalty
at each bug report to stall pipeline and prepare debugging informa-
tion.

CPU 2.0 GHz in-order; 1 issue width each core
L1 cache (private) 32K, 4 way, 64B/line, 2 cycle latency
L2 cache (shared) 1M, 8 way, 64B/line, 10 cycle latency
Memory 200 cycles latency
Cache coherence Derived from Piranha [2] CMP cache
protocol coherence protocol

Table 2. Simulation configuration



Application BugNo. Bug description
Unprotected buffer length read and write

Apache #1 corrupt log file(Figure 4)
HTTP server Unprotected reference counter write-read
(253K LOC) #2 causes null pointer reference

Unprotected database bin log close and open
#1 cause some actions not logged (Figure 5)

MySQL Unprotected query-id set and read
DB server #2 crashes database server

(688K LOC) Unprotected ‘delete table’ query and
#3 logging causes database log disorder

Mozilla Unprotected script handler set and read
-extract2 #1 causes null pointer reference (Figure 1)

Table 3. Evaluated applications and atomicity bugs.

Two sets of applications are used in our experiments. The first
set is used to evaluate AVIO’s bug detection capability. Unlike
many previous hardware race detection studies [30, 31] that eval-
uated with manually injected bugs, we use six real atomicity vio-
lation bugs which were unintentionally introduced by the original
programmers in two large real-world server applications (Apache
and MySQL) and Mozilla2. Table 3 shows the buggy applications
and the description of the six real bugs. For these applications, we
evaluate whether the bug can be detected and how many false pos-
itives are reported during the bug manifestation run.

In the second set, we use several well known SPLASH-2 bench-
marks to evaluate AVIO’s overhead and false positive. SPLASH-2
has also been used in many previous works [29, 31, 32] to evaluate
false positives because they have few concurrency bugs.

Besides comparing our two implementations AVIO-S and
AVIO-H, we directly compare the false positives, negatives and
overhead with an enhanced lockset algorithm implemented in Val-
grind [25], which we will refer to as Val(grind)-Lockset algorithm.
In addition, we also compare indirectly with the happens-before
algorithm and the SVD algorithm [42] by analytically evaluating
whether each bug can be detected by them based on our under-
standing of these two algorithms. In terms of false positive and
overhead, we refer to previous papers: happens-before has similar
level of overhead with lock-set algorithm; SVD reports an up to a
65X server application overhead and 1-60 static false positives for
the same server applications, MySQL and Apache.

To demonstrate the less stringent requirement of AVIO on train-
ing runs, we do not use same inputs for detection and training in
our experiments. To extract AI invariants, we examine multiple ac-
cess interleavings during 100 training runs (or 100 server requests)
for each application. The invariant filtering threshold T is set to 0.
In addition, we also conduct sensitivity studies on the number of
training runs for both server applications and SPLASH-2 bench-
marks. The result shows that no more than 100 server requests or 5
training runs are enough to obtain reasonably accurate AI invariants
for all the tested applications.

6. Experimental Result
6.1 Functional Results
(1) Bug detection capability AVIO detects more tested real bugs
than the three alternatives (Val-Lockset, happens-before and SVD).
Specifically, as shown in Table 4, AVIO can detect five out of the
six tested bugs, while the three alternatives can detect only one or
three.

MySQL bug3 requires atomicity among accesses to multiple
global variables. These variables have no data or control depen-

2 Since our instrumentation and simulation tools do not support Mozilla’s
graphic user interface, we use an extracted version of the real bug in Mozilla
based on its nsXULDocument.cpp file.

dency with each other, but must be consistent for semantic reasons.
As a result, it is not detected by any evaluated tool. Besides this
bug, the Lockset algorithm cannot detect the Mozilla-extract bug,
because it is data-race free, as explained in Figure 1. For the same
reason, the happens-before algorithm also fails to detect it. SVD
cannot detect MySQL Bug1, because it is an atomicity violation
involving a write-after-write access pair, with no true data depen-
dency or control dependency within it. The pair are therefore not be
put into one computation region and consequently not checked by
SVD. Similarly, Apache Bug2, MySQL Bug2 and Mozilla-extract
are atomicity violations with write-then-read access pairs, which
are also not checked automatically by SVD.

In contrast, AVIO’s bug detection capability is more compre-
hensive because, unlike race detectors, it does not rely on synchro-
nization primitives; unlike SVD, it can detect atomicity violations
with write-read and write-write dependencies based on our serial-
izability analysis.

(2) False positives Table 5 shows that AVIO introduces only 1–
11 static and 1–17 dynamic false positives on server applications,
much fewer than the Lockset algorithm, which has on average 51.5
static and 118.5 dynamic false positives. Similarly, for the bug-free
SPLASH-2 benchmarks, AVIO-S has no false positive and AVIO-
H has only an average of 1.25 static and dynamic false positives,
while Lockset has 8.25 static and 26313 dynamic false positives on
average.

The lockset algorithm’s high false positive rate is because, as
discussed in Section 1, it incorrectly reports all shared accesses that
are correctly synchronized using non-lock based methods, such as
barriers, flag-synchronization, etc. Such cases account for 64% of
the static false positives in the four SPLASH-2 benchmarks. In ad-
dition, lockset cannot differentiate benign races from real bugs. For
the SPLASH-2 benchmarks, 21% of the static false positives are
contributed by benign races. Even though we do not evaluate false
positives with the happens-before algorithm, we expect that the re-
sults will be similar because the happens-before algorithm also re-
lies on synchronization primitives to order execution segments and
thereby suffers from the same problems such as benign races, etc.
The large number of false positives in the previous algorithms re-
quires much effort from programmers to sift through manually.

In contrast, AVIO reports many fewer false positives because it
does not rely on any synchronization primitives. Instead, it bases
its detection on access interleavings, which are more essential and
fundamental to atomicity violation bugs. Correctly synchronized
accesses are not reported as bugs no matter what synchronization
methods are used because they do not violate AI invariants. More-
over, AVIO can easily differentiate benign races from true bugs be-
cause benign races do not have any AI invariants, i.e., these code
segments actually welcome unserializable interleavings. Therefore,
AVIO does not report bugs at these code points.

Bug Detected
Application AVIO-H AVIO-S Val- Happens SVD

(Hardware) (Software) Lockset -before
Apache #1 Yes Yes Yes Yes Yes
Apache #2 Yes Yes Yes Yes No∗

MySQL#1 Yes Yes Yes Yes No∗

MySQL#2 Yes Yes No No No
MySQL#3 No No No No No∗

Mozilla-extract Yes Yes No No No∗

Table 4. Bug detection results for various techniques, against buggy
real applications. * Since the four bugs are not in the SVD paper, we evaluate
them based on our understanding of the SVD algorithm. This is easy because
these bugs involve either write-write or write-read dependencies, or multiple
unrelated variables, and therefore cannot be detected by SVD at run time. The
other two bugs are evaluated in the SVD work and our results agree with theirs.



Dynamic False Positive Static False Positive
Benchmark AVIO AVIO Lock-set AVIO AVIO Lock-set

-H -S -H -S
Apache #1 6 5 6 3 2 6
Apache #2 1 1 23 1 1 20
MySQL#1 4 4 107 4 4 79
MySQL#2 17 6 338 11 6 101
Average 7 4 118.5 4.75 3.25 51.5

fft 1 0 4098 1 0 6
fmm 4 0 389 4 0 12

lu 0 0 65026 0 0 5
radix 0 0 35740 0 0 10

Average 1.25 0 26313 1.25 0 8.25

Table 5. False positives rates for server applications and bug-free
SPLASH-2 benchmarks. We determine each server application’s false posi-
tives by manually examining the application’s bugzilla database. Dynamic false
positives are dynamic instances of false positives reported during execution and
static false positives are static code segments incorrectly reported as bugs. Since
Mozilla-extract is extracted from Mozilla by us, its false positive number is not
objective and is therefore not reported here.

Bug Detection Execution Slow Down
Bench- AVIO AVIO Valgrind-
mark (Hardware) (Software) Lockset
fft 0.5% 42X 1217X
fmm 0.4% 19X 660X
lu 0.4% 23X 661X
radix 0.4% 15X 236X
Average 0.4% 25X 694X

Table 6. Overhead comparison of synchronization bug detection on
SPLASH-2 benchmarks

AVIO still has a few false positives. For software AVIO, the
false positives are due to insufficient training. Since server applica-
tions are very complicated, some correct interleavings do not occur
during our short training (only 100 client requests). For hardware
AVIO, apart from insufficient training, the reason for most false
positives is false sharing at the cache line granularity. Unlike the
lockset algorithm, AVIO never has huge numbers of dynamic false
positives even when the static false positive rate is comparable to
the Lock-set algorithm’s, because most of AVIO’s false positives
occur due to rare interleavings or code paths.

(3) Comparison of AVIO-S and AVIO-H Functionality As
AVIO-S has a much smaller granularity than that of AVIO-H,
AVIO-S is more accurate. For example, it incurs up to 5 fewer static
false positives than AVIO-H. But as shown in the next section, this
improved accuracy is achieved with much higher overhead.

6.2 Overhead Results
AVIO has low detection overhead due to the hardware support and
the simple detection algorithm we use. As shown from our experi-
ments on SPLASH-2 benchmarks (table 6), AVIO-H imposes only
0.4-0.5% overhead, clearly feasible for production run use. Without
hardware support, the software implementation AVIO-S imposes
an average of 25 times slow down. Although this is acceptable for
in house testing or postmortem analysis with deterministic replay
support [24, 41], it is too high for production runs. We expect its
overhead would still be substantially higher than AVIO-H even af-
ter aggressive static analysis optimizations.

Though much worse than AVIO-H, our software implementa-
tion AVIO-S still outperforms these previous software approaches.
As shown in Table 6, the Valgrind-lockset imposes an average of
694 times slow down3. As the original SVD paper [42] reports,
SVD imposes a factor of 65 times slow down to server applica-

3 Part of the slow-down is from Valgrind’s code emulation mechanism.

tions. Such performance advantage is mainly due to the simplicity
of our bug detection algorithm. In the future, static analysis can be
used to further improve the performance of AVIO-S.

In summary, AVIO-S would be a good choice for off-line bug
detection and diagnosis, while AVIO-H can be employed for pro-
duction runs.

6.3 Training Sensitivity
Our sensitivity study results show that for most applications, a few
runs are sufficient to get a set of reasonably accurate AI invariants,
which are also robust to different inputs. Figure 10 shows the
number of false positives reported when we use the invariants
generated from a different number (1-10) of training runs for the
SPLASH-2 benchmarks, or a different number (1-100) of requests
for MySQL.

In all four SPLASH-2 benchmarks, the false positives drop to 0
when we use the invariants extracted from more than two training
runs. Similarly, with MySQL, most false positives are eliminated
after just 100 training requests. Such results indicate that AVIO’s
training requirements are not stringent.

As mentioned before, in all our experiments, the inputs used in
detection runs are different from those in training runs. Therefore,
our results also show that training with one input can be used
to guide bug detection with other inputs. Of course, similar to
other invariant-based approaches [14, 44] and general dynamic bug
detectors, AVIO can only generate invariants from exercised code.
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Figure 10. Effect of training on static false positives for SPLASH-2
benchmarks and MySQL server. ( (b) uses different x-axis scale–the number
of requests)

7. Discussion: Limitations of AVIO
AVIO is definitely not a panacea. the current AVIO prototypes
suffer from the following limitations and require more work in the
future to enhance AVIO to address these problems.

(1) Bugs that are not exposed during the monitored run. Like
many previous dynamic race and memory bug detectors, AVIO re-
ports only those bugs that manifest in the monitored run and may
miss potential bugs that do not happen during that run. It would be
ideal if AVIO can predict non-exposed bugs like lockset algorithm.
However, lockset algorithm focuses on data race and can not ef-
fectively detect atomicity violation. It also suffers from high false
positive rates, less applicability to future transactional memory pro-
grams, etc. In the future, AVIO can use static and dynamic analysis
to infer potential interleavings during detection, so that it can be
less sensitive to scheduling. Advanced concurrency test generation
techniques can also help AVIO to counter this problem in the fu-
ture.

(2) Atomicity violations involving multiple variables. Like most
previous tools, including Lockset, happens-before and SVD, AVIO
focuses on single variable related bugs and cannot detect con-
currency bugs that involve multiple shared variables, such as the
MySQL bug3. Fortunately, real world concurrency bug character-
ization experience indicates that concurrency bugs involving sin-
gle variables are more typical and can serve as the building blocks



of multi-variable ones. In order to extend AVIO to detect multiple
variable atomicity violation. In many cases, we can simply com-
pose multi-address regions from several single-address atomicity
regions. We just need to extend the detection protocol to look out
when serialization of one variable’s accesses conflicts with that
of another variable. In more complicated and challenging cases
when multi-addresses are correlated by high-level semantics, like
the MySQL bug3, our AI-Invariance needs to be extended to con-
sider multiple variable access interleaving invariance. How to sys-
tematically detect concurrency bugs involving multiple variables is
still an open question left for our future work.

(3) Training Overhead. Training will also add some overhead to
the whole AVIO bug detection process. Fortunately, the training
results can be reused. Even when the code is changed, we can still
save the training effort of unchanged part and only redo the training
for those change-related or not well trained parts. For each training
run, the overhead is similar to that of a detection run (reported
in section 6). The training run number depends on the sufficiency
requirements. As shown in section 6.3, as long as the related code
region is covered, usually small number of training runs (less than
100 requests in our server applications) would provide sufficient
interleaving samples.

8. Related Work
Due to space limit, we describe only closely related work:

Data race detection Previous work in data race detection can be
grouped into the categories of dynamic and static. In dynamic race
detection, happens-before [7, 26, 28] and lockset algorithms [6,
34, 38] have been thoroughly studied. Many extensions and com-
binations have been proposed to reduce false positives or over-
head [27, 29, 43]. Static data race detection techniques include
race type-safe systems [3, 10], static-versions of the lockset al-
gorithm [8] and model checking techniques [17]. As discussed in
Section 1, all data race detection techniques, while useful, still have
several limitations, primarily because not all concurrency bugs are
data races and not all data races are concurrency bugs. In contrast,
the focus of our work is atomicity violation detection.

Atomicity Violation Detection Several static and dynamic tech-
niques based on state reduction theory of right/left mover have
been proposed [12, 33, 39] to detect atomicity violations. All of
these methods require programmers to annotate all synchronization
points, which is expensive; and also annotate code regions that need
to be atomic, which is impractical–if programmers can properly do
this, they can properly synchronize these areas. These problems are
addressed to some extent by Atomizer [11], which gains synchro-
nization knowledge through the lockset algorithm [34] and uses
simple heuristics to identify atomic blocks. While an improvement,
its synchronization knowledge is limited by the lockset algorithm.
Also not requiring manual annotation, SVD [42] studies a subclass
of atomicity problems based on computational region. In [4], stale-
value errors, a subclass of atomicity violation, is studied.

Compared to previous atomicity violation work, our AVIO is
more general: we indirectly infer atomic regions by observing AI
invariants without knowledge of synchronization primitives. In ad-
dition, benefiting from our comprehensive serializability analysis,
AVIO-S covers more atomicity violation cases. Moreover, since
AVIO leverages the cache coherence protocol, our hardware imple-
mentation has negligible overhead, orders of magnitudes smaller
than previous works on atomicity violation detection.

Bug Detection Our work is also related to invariant-based de-
tection and hardware-support for bug detection. Invariant-based
bug detection is a new and promising direction. Its feasibility and
powerful bug detection capability is shown in previous work like
DAIKON [9], DIDUCE [14], AccMon [44] and Liblit’s work [20].

Our AVIO shares the strength of invariant-based bug detection with
previous work. However, we are one of the first proposing invari-
ants in access interleavings for concurrent programs. In addition,
our work has less stringent requirement on training data generation
since by simply running the same test case many times, we obtain
many different access interleavings.

Recently several studies have exploited hardware support for
bug detection, including memory related bug detectors [36, 44, 45],
deterministic replay support [24, 41], etc. As mentioned in Sec-
tion 1, previous works have also investigated hardware and coher-
ence protocol supports for data race detection. Examples include
[23, 28, 32], almost all of which implement the happens-before
race detection algorithm by combining with cache coherence pro-
tocols in distributed shared memory systems. Most recently, ReEn-
act [31] employs advanced TLS architecture for race detection and
CORD [30] uses scalar logical timestamps to improve the scalabil-
ity. Since all these previous studies are based on happens-before,
they all share the intrinsic and fundamental limitations of happens-
before as described in Section 1.

Like previous techniques, AVIO also exploits hardware to re-
duce overhead to negligible level. Unlike them, AVIO uses a fun-
damentally different approach, AI invariants, to detect atomicity vi-
olation bugs instead of data races. It can therefore differentiate be-
nign races, require no knowledge of synchronization mechanisms,
and can apply to future transaction-based parallel programs.

New programming language and model for atomicity Recent re-
search have conducted on new programming models such as trans-
actional memory [1, 13, 16, 18] to replace the existing lock-based
synchronization. These new programming language features allow
programmers to explicitly specify code regions or data that need
to be atomic [37]. All of these new approaches aims to eliminate
error-prone explicit locks to make concurrent programming easier.
However, although such approach can significantly reduce the num-
ber of concurrency bugs such as data races, they still cannot avoid
atomicity violations. The reason is that programmers can make
mistakes when dividing atomic regions. Our AVIO can help detect
these bugs.

9. Conclusions
This paper has presented an innovative, invariant-based approach
called AVIO to detect atomicity violations. By automatically ex-
tracting AI invariants and detecting violations of these invariants at
run time, AVIO can detect a variety of atomicity violation bugs.
We have implemented AVIO in two different ways, a software-
only implementation (AVIO-S) and a hardware implementation
(AVIO-H). AVIO is evaluated using two real-world server applica-
tions (Apache and MySQL) with five representative real bugs, one
extracted-version of Mozilla with one real bug in it, and several
SPLASH-2 benchmarks. Our results show that AVIO detects more
bugs with much fewer false positives than previous algorithms.
Comparing the two implementations of AVIO, AVIO-H incurs very
little (0.4–0.5%) overhead while AVIO-S introduces fewer false
positives. We are in the process of extending this work to address
the limitations discussed in Section 7.

As the emerging transactional memory programming model
becomes more attractive due to the multi-core technology trend,
atomicity violation detection will become increasingly urgent be-
cause parallel programs written using such models will suffer more
from atomicity violations instead of data races (explained in Sec-
tion 1). To the best of our knowledge, our work provides one of the
first practical, comprehensive, low-overhead approaches in detect-
ing various atomicity violations, especially with a fundamentally
different and novel idea and an evaluation using real bugs from
real-world server programs. In addition, our hardware AVIO is also
the first using hardware support to detect atomicity violations.
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