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Abstract

Recent impressive performance improvements in computer ar-
chitecture have not led to significant gains in ease of debugging.
Software debugging often relies on inserting run-time software
checks. In many cases, however, it is hard to find the root cause
of a bug. Moreover, program execution typically slows down sig-
nificantly, often by 10-100 times.

To address this problem, this paper introduces theIntelligent
Watcher (iWatcher), novel architectural support to monitor dy-
namic execution with minimal overhead, automatically, andflex-
ibly. iWatcher associates program-specified monitoring functions
with memory locations. When any such location is accessed, the
monitoring function is automatically triggered with low overhead.
To further reduce overhead and support rollback, iWatcher can
leverage Thread-Level Speculation (TLS). To test iWatcher, we use
applications with various bugs. Our results show that iWatcher de-
tects many more software bugs than Valgrind, a well-known open-
source bug detector. Moreover, iWatcher only induces a 4-80%
execution overhead, which is orders of magnitude less than Val-
grind. Even with 20% of the dynamic loads monitored in a program,
iWatcher adds only 66-174% overhead. Finally, TLS is effective at
reducing overheads for programs with substantial monitoring.

1. Introduction

1.1. Motivation

Despite costly efforts to improve software-development method-
ologies, software bugs in deployed codes continue to thrive, often
accounting for as much as 40% of computer system failures [24].
Software bugs can crash systems, making services unavailable or,
in the form of “silent” bugs, corrupt information or generate wrong
outputs. According to NIST [26], software bugs cost the U.S.econ-
omy an estimated $59.5 billion annually, or 0.6% of the GDP!

There are several approaches to debug codes. One approach is
to perform checks statically. Examples of this approach include
explicit model checking [25, 42] and program analysis [3, 8,12].
Most static tools require significant involvement of the program-
mer to write specifications or annotate programs. In addition, most
static tools are limited by aliasing problems and other compile-time
limitations. This is especially the case for programs written in un-
safe languages such as C or C++, the predominant programming
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languages in industry. As a result, many bugs often remain inpro-
grams even after aggressive static checking.

Another approach is to monitor execution dynamically, with
instrumentation inserted in the code that monitors invariants and
reports violations as errors. The strength of this approachis
that the analysis is based on actual execution paths and accurate
values of variables and aliasing information. Examples of dy-
namic monitors include Purify [14], Valgrind [36], Intel thread
checker [17], DIDUCE [13], Eraser [33], CCured [5, 27], and other
tools [1, 6, 23, 30, 31].

Unfortunately, most dynamic checkers suffer from two limita-
tions. First, they are often computationally expensive. One ma-
jor reason is their large instrumentation cost. Another reason is
that dynamic checkers may instrument more places than necessary
due to lack of accurate information at instrumentation time. As
a result, some dynamic checkers slow down a program by 6-30
times [13, 33], which makes such tools undesirable for production
runs. Moreover, some timing-sensitive bugs may never occurwith
these slowdowns.

Second, most dynamic checkers rely on compilers or pre-
processing tools to insert instrumentation and, therefore, are lim-
ited by imperfect variable disambiguation. Consequently,some ac-
cesses to a monitored location may be missed by the instrumenta-
tion tool. Because of this reason, some bugs are caught much later
than when they actually occur, which makes it hard to find the root
cause of the bug. The following C code gives a simple example.

int x, *p;
/* assume invariant: x = 1 */

...
p = foo(); /* a bug: p points to x incorrectly */
*p = 5; /* line A: corruption of x */
...
InvariantCheck(x == 1); /* line B */
z = Array[x];
...

While x is corrupted in line A, the bug is not detected until the
invariant check at line B. Due to the difficulty of performingperfect
pointer disambiguation, it may be hard for a dynamic checkerto
know that it needs to insert an invariant check after line A.

To assist software debugging, several processor architectures
such as Intel x86 and Sun SPARC provide support for watchpoints
to monitor several programmer-specified memory locations [15, 18,
39, 45]. When a watched memory location is accessed, the hard-
ware triggers an exception that is handled by the debugger. It is
then up to the programmer to manually check the program state.
While watchpoints are a good starting point, they have several limi-
tations. First, they do not supportlow-overheadchecks on variable



valuesautomatically. Since exceptions are expensive, it would be
very inefficient to use them for dynamic bug detection duringpro-
duction runs. Second, most architectures only support a handful of
watchpoints (four in Intel x86). Therefore, it is hard to usewatch-
points for dynamic monitoring in production runs, which requires
efficiency and watching many memory locations.

1.2. Our Approach

This paper introduces theIntelligent Watcher (iWatcher), novel
architectural support to monitor dynamic execution withmini-
mal overhead, automatically, and flexibly. iWatcher associates
program-specified monitoring functions with memory locations.
When any such location is accessed, the monitoring functionis au-
tomatically triggered with low overhead. To further reduceover-
head and support rollback, iWatcher can leverage Thread-Level
Speculation (TLS). The main advantages of iWatcher are:

• It monitors all accesses to the watched memory locations.
Consequently, it catches hard-to-find bugs such as updates
through aliased pointers and stack-smashing attacks com-
monly exploited by viruses.

• It has low overhead because it (i) only monitors memory in-
structions thattruly access the watched memory locations,
(ii) uses minimal-overhead hardware-supported triggering of
monitoring functions, and (iii) can leverage TLS to execute
monitoring functions in parallel with the program.

• It is flexible in that it can support a wide range of checks, in-
cluding program-specific checks. Moreover, iWatcher is lan-
guage independent, cross-module and cross-developer.

We evaluate iWatcher using buggy applications with memory
corruption, memory leaks, buffer overflow, value invariantviola-
tions, outbound pointers, and smashed stacks. iWatcher detects all
the bugs evaluated in our experiments with only a 4-80% execu-
tion overhead. In contrast, a well-known open-source bug detector
called Valgrind induces orders of magnitude more overhead,and
can only detect a subset of the bugs. Moreover, even with 20% of
the dynamic loads monitored in a program, iWatcher only adds66-
174% overhead. Finally, TLS is effective at reducing overheads for
programs with substantial monitoring.

This paper is organized as follows. Section 2 briefly describes
some background. Sections 3, 4, and 5 describe iWatcher’s func-
tionality, architectural design, and advantages. Sections 6 and 7
present the evaluation methodology and experimental results. Sec-
tion 8 discusses related work and Section 9 concludes.

2. Background
2.1. Dynamic Execution Monitoring

Many methods have been proposed for dynamic code monitor-
ing. The most commonly used ones are assertions, dynamic check-
ers, and watchpoints.
Assertions. Assertions are inserted by programmers to perform
sanity checks at certain places. If the condition specified in an as-
sertion is false, the program aborts. Assertions are one of the most
commonly used methods for debugging. However, they can add
significant overhead to program execution. Moreover, it is often
hard to identify all the places where assertions should be placed.

Dynamic Checkers. Dynamic checkers are automated tools that
detect common bugs at run time. For example, DIDUCE [13] auto-
matically infers likely program invariants, and uses them to detect
program bugs. Purify [14] and Valgrind [36] monitor memory ac-
cesses to detect memory leaks and some simple instances of mem-
ory corruption, such as freeing a buffer twice or reading an unini-
tialized memory location. StackGuard [6] can detect some buffer
overflow bugs, which have been a major cause of security attacks.
Eraser [33] can detect data races by dynamically tracking the set of
locks held during program execution. These tools usually use com-
pilers or code-rewriting tools such as ATOM [40], EEL [20] and
Dyninst [2] to instrument programs with checks.

While this approach is promising, dynamic checkers often suffer
from the following limitations: (1) aliasing problems, especially in
C/C++ programs, (2) high run-time overhead, (3) hard-codedbug
detection functionality, (4) language specificity, and (5)difficulty to
work with low-level code.

Hardware-Assisted Watchpoints. Hardware-assisted watch-
points [15, 18, 39] use simple hardware support to watch a
user-selected memory location. When a watched location is
accessed by the program, an exception is handled by an interactive
debugger such as gdb. Then, the state of the process can be exam-
ined by programmers using the debugger. The hardware support is
provided through a few special debug registers. Watchpoints are
designed to be used in an interactive debugger. For non-interactive
execution monitoring, they are both inflexible and inefficient.
They do not provide a way to associate an automatic check to the
access of a watched location. Moreover, they require an expensive
exception when a watched location is accessed. Finally, most
architectures only support a few watchpoints (four in Intel’s x86).

Summary. We classify the dynamic monitoring methods into two
categories:

• Code-Controlled Monitoring (CCM).Monitoring is per-
formed only at special points in the program. Assertions and
most dynamic checkers belong to CCM because they only
check at assertions or instrumentation points.

• Location-Controlled Monitoring (LCM).Monitoring is asso-
ciated directly with memory locations and therefore all ac-
cesses to such memory locations are monitored. Hardware-
assisted watchpoints and iWatcher belong to this category.

LCM has two advantages over CCM: (1) LCM monitorsall ac-
cesses to a watched memory location using all possible variable
names or pointers, whereas CCM may miss some accesses because
of pointer aliasing; (2) LCM monitors only those memory instruc-
tions thattruly access a watched memory location, whereas CCM
may need to instrument at many unnecessary points due to the lack
of accurate information at instrumentation time. Therefore, LCM
can be used to detect both invariant violations and illegal accesses
to a memory location, whereas it may be difficult and too expensive
for CCM to check for illegal accesses.

2.2. Thread-Level Speculation (TLS)

TLS is an architectural technique for speculative parallelization
of sequential programs [4, 38, 41, 44]. TLS support can be built



on a multithreaded architecture, such as simultaneous multithread-
ing (SMT) or chip multiprocessor (CMP) machines. With TLS, the
execution of a sequential program is divided into a sequenceof mi-
crothreads(also called tasks, slices, or epochs). These microthreads
are then executed speculatively in parallel, while specialhardware
detects violations of the program’s sequential semantics.Any viola-
tion results in squashing the incorrectly executed microthreads and
re-executing them. To enable squash and re-execution, the memory
state of each speculative microthread is typically buffered in caches
or special buffers. When a microthread finishes its execution and
becomes safe, it can commit. Committing a microthread merges
its state with the safe memory. To guarantee sequential semantics,
microthreads commit in order.

iWatcher can leverage TLS to reduce monitoring overhead and
to support rollback and re-execution of a buggy code region [32].
For our design, we assume an SMT machine, and that the specula-
tive memory state is buffered in caches. However, we believeour
iWatcher design can be easily ported to other TLS architectures.

In our design, each cache line is tagged with the ID of the mi-
crothread to which the line belongs. Moreover, for each speculative
microthread, the processor contains a copy of the initial state of the
architectural registers. This copy is generated when the speculative
microthread is spawned and is freed when the microthread commits.
It is used in case the microthread needs to be rolled back.

The TLS mechanisms for in-cache state buffering and rollback
can be reused to support incremental rollback and re-execution of
the buggy code [32]. To do this, basic TLS is modified slightlyby
postponing the commit time of a successful microthread. In basic
TLS, a microthread can commit when it completes and all its prede-
cessors have committed. We say that such a microthread isready.
To support the rollback of buggy code, a ready microthread com-
mits only in one of two cases: when we need space in the cache and
when the number of uncommitted microthreads exceeds a certain
threshold. With this support, a ready but uncommitted microthread
can still be asked to rollback. This feature can be used to support
one of the iWatcher modes (Section 4.5).

3. iWatcher Functionality

iWatcher provides high-flexibility and low-overhead dynamic
execution monitoring. It associates program-specified monitoring
functions with memory locations. When any such location is ac-
cessed, the monitoring function associated with it is automatically
triggered and executed.

iWatcher provides two system calls to turn on and off monitor-
ing on a memory location, namelyiWatcherOnand iWatcherOff.
These calls can be inserted in programs either automatically by an
instrumentation tool or manually by programmers. The following
is theiWatcherOninterface:

iWatcherOn(MemAddr, Length, WatchFlag, ReactMode,
MonitorFunc, Param1, Param2, ... ParamN)

/* MemAddr: starting address of the memory region*/
/* Length: length of the memory region */
/* WatchFlag: types of accesses to be monitored */
/* ReactMode: reaction mode */
/* MonitorFunc: monitoring function */
/* Param1...ParamN: parameters of MonitorFunc */

If a program makes such a call, iWatcher associates monitoring
functionMonitorFunc() with a memory region ofLength bytes

starting atMemAddr. TheWatchF lag specifies what types of
accesses to this memory region should be monitored. Its value can
be “READONLY”, “WRITEONLY”, or “READWRITE”, in which
case the monitoring function is triggered on a read access, write
access or both, respectively.

At a triggering access(an access to a monitored memory loca-
tion), the hardware automatically initiates the monitoring function
associated with this memory location. The architecture passes the
values ofParam1 throughParamN to the monitoring function.
In addition, it also passes information about the triggering access,
including the program counter, the type of access (load or store;
word, half-word, or byte access), reaction mode, and the memory
location being accessed. It is the monitoring function’s responsibil-
ity to perform the check.

A monitoring function can have side effects and can read and
write variables without any restrictions. To avoid recursive trigger-
ing of monitoring functions, no memory access performed inside a
monitoring function can trigger another monitoring function.

From the programmers’ point of view, the execution of a mon-
itoring function follows sequential semantics, just like avery
lightweight exception handler (Section 4 describes why monitoring
in iWatcher is very lightweight). The semantic order is: thetrig-
gering access, the monitoring function, and the rest of the program
after the triggering access.

Upon successful completion of a monitoring function, the pro-
gram continues normally. If the monitoring function fails (returns
FALSE), different actions are taken depending on theReactMode

parameter specified in iWatcherOn(). iWatcher supports three
modes:ReportMode, BreakMode andRollbackMode:

• ReportMode: The monitoring function reports the outcome
of the check and lets the program continue. This mode can be
used for profiling and error reporting without interfering with
the execution of the program.

• BreakMode: The program pauses at the state right after the
triggering access and control is passed to an exception han-
dler. Users can potentially attach an interactive debugger,
which can be used to find more information.

• RollbackMode: The program rolls back to the most re-
cent checkpoint, typically much before the triggering access.
This mode can be used to support deterministic replay of a
code section to analyze an occurring bug [32], or to support
transaction-based programming [29].

A program can associate multiple monitoring functions withthe
same location. In this case, upon an access to the watched location,
all monitoring functions are executed following sequential seman-
tics according to their setup order.

When a program is no longer interested in monitoring a memory
region, it turns off the monitoring using

iWatcherOff(MemAddr, Length, WatchFlag, MonitorFunc)
/* MemAddr: starting address of the watched region*/
/* Length: length of the watched region */
/* WatchFlag: types of accesses to be unmonitored */
/* MonitorFunc: the monitoring function */

After this operation, theMonitorFunc associated with this
memory region ofLength bytes starting atMemAddr and



WatchF lag is deleted from the system. Other monitoring func-
tions associated with this region are still in effect.

Besides using the iWatcherOff() call to turn off monitoring
for a specified memory region, the program can also use a
MonitorF lag global switch that enables or disables monitoring
on all watched locations. This switch is useful when monitoring
overhead is a concern. When the switch is disabled, no location is
watched and the overhead imposed is negligible.

Note that iWatcher only provides a very flexible mechanism for
dynamic execution monitoring. It is not iWatcher’s responsibility
to ensure that a monitoring function is written correctly, just like
anassert(condition)call cannot guarantee that the condition in the
code makes sense. Programmers can use invariant-inferringtools
such as DIDUCE [13] and DAIKON [9] to automatically insert
iWatcherOn() and iWatcherOff() calls into programs.

With this support, we can rewrite the example of Section 1 using
iWatcherOn()/iWatcherOff() operations. There is no need to insert
the invariant check. iWatcherOn() is inserted at the very beginning
of the program so that the system can continuously checkx’s value
whenever and however the memory location is accessed. This way,
the bug is caught at line A.

int x, *p;
/* assume invariant: x = 1 */

iWatcherOn(&x, sizeof(int), READWRITE,
BreakMode, &MonitorX, &x, 1);

...
p = foo(); /* a bug: p points to x incorrectly */
*p = 5; /* line A: a triggering access */
...
z = Array[x]; /* line B: a triggering access */
...
iWatcherOff(&x, sizeof(int), READWRITE, &MonitorX);

bool MonitorX(int *x, int value){
return (*x == value);

}

4. Architectural Design of iWatcher
To implement the functionality described above, there are at

least four challenges: (1) How to monitor a location? (2) Howto
detect a triggering access? (3) How to trigger a monitoring func-
tion? (4) How to support the three reaction modes? In this section,
we first give an overview of the implementation and then show how
it addresses these challenges.

4.1. Overview of the Implementation

iWatcher is implemented using a combination of hardware and
software. Logically, it has four main parts. First, to detect trig-
gering accesses on small monitored memory regions, we tag cache
lines in both L1 and L2 caches with WatchFlags; to detect trigger-
ing accesses on large monitored memory regions, we use a small
Range Watch Table (RWT). Second, the hardware triggers monitor-
ing functions on the fly and provides a specialMain checkfunction
register to store the common entry point for all monitoring func-
tions. Third, we leverage TLS to reduce overheads and support the
three reaction modes. Finally, we use software to manage theasso-
ciations between watched locations and monitoring functions.

Figure 1 gives an overview of the iWatcher hardware. Each L1
and L2 cache line is augmented with WatchFlags. They identify

Figure 1. iWatcher hardware architecture.

words belonging to small monitored memory regions. There are
two WatchFlag bits per word in the line: a read-monitoring one
and a write-monitoring one. If the read (write)-monitoringbit is
set for a word, all loads (stores) to this word automaticallytrig-
ger the corresponding monitoring function. The processor also
has a Maincheckfunction register that holds the address of the
Main checkfunction(), which is the common entry point to all
program-specified monitoring functions. In addition, iWatcher also
has aVictim WatchFlag Table (VWT), which stores the WatchFlags
for watched lines of small regions that have at some point been dis-
placed from L2.

To detect accesses to large (multiple pages) monitored memory
regions, iWatcher uses a set of registers organized in the RWT. Each
RWT entry stores the virtual start and end addresses of a large re-
gion being monitored, plus two bits of WatchFlags and one valid
bit. We will see that the RWT is used to prevent large monitored
regions overflowing the L2 cache and the VWT. The WatchFlags
of these lines do not need to be set in the L1 or L2 cache unless
the lines are also included in a small monitored regions. When the
RWT is full, additional large monitored regions are treatedthe same
way as small regions.

To reduce monitoring overhead, iWatcher can use TLS to specu-
latively execute the main program in parallel with monitoring func-
tions. Moreover, iWatcher can also leverage TLS to roll backthe
buggy code with low overhead, for subsequent replay.

While TLS was also used by Oplinger and Lam to hide over-
heads [29], iWatcher uses a different TLS spawning mechanism.
Specifically, iWatcher uses dynamic hardware spawning, which re-
quires no code instrumentation. Oplinger and Lam, instead,insert
thread-spawning instructions in the program statically. In general,
their approach is less efficient and hurts some conventionalcom-
piler optimizations. Many of the new issues that appear withdy-
namic hardware spawning are discussed in Sections 4.3 and 4.4.

The software component of iWatcher includes the
iWatcherOn/Off() system calls, which set or remove associa-
tions of memory locations with monitoring functions. iWatcher
uses a software table calledCheck Tableto store detailed mon-
itoring information for each watched memory location. The
information stored includes MemAddr, Length, WatchFlag,
ReactMode, MonitorFunc, and Parameters. Using software



simplifies the hardware and enables the system to use sophisticated
data structures. An iWatcherOn/Off() call adds or removes the
corresponding entry to or from the check table.

The iWatcher software also implements the
Main checkfunction() library call, whose starting address is
stored in the Maincheckfunction register. When a triggering
access occurs, the hardware sets the program counter to the address
in this register. The Maincheckfunction() is responsible to call
the program-specified monitoring function(s) associated with the
accessed location. To do this, it needs to search the check table and
find the corresponding function(s).

4.2. Watching a Range of Addresses

When a program calls iWatcherOn() for a memory region equal
or larger thanLargeRegion, iWatcher tries to allocate an RWT en-
try for this region. If there is already an entry for this region in
the RWT, iWatcherOn() sets the entry’s WatchFlags to the logical
OR of its old value and the WatchFlag argument of the call. If,
instead, the region to be monitored is smaller thanLargeRegion,
iWatcher loads the watched memory lines into the L2 cache (ifthey
are not already in L2). We do not explicitly load the lines into L1
to avoid unnecessarily polluting L1. As a line is loaded frommem-
ory, iWatcher accesses the VWT to read-in the old WatchFlags, if
they exist there. Then, it sets the WatchFlag bits in the L2 line to
be the logical OR of the WatchFlag argument of the call and theold
WatchFlags. If the line is already present in L2 and possiblyL1,
iWatcher simply sets the WatchFlag bits in the line to the logical
OR of the WatchFlag argument and the current WatchFlag. In all
cases, iWatcherOn() also adds the monitoring function to the check
table.

When a program calls iWatcherOff(), iWatcher removes the cor-
responding monitoring function entry from the check table.More-
over, if the monitored region is large and there is a corresponding
RWT entry, iWatcherOff() updates this RWT entry’s WatchFlags.
The new value of the WatchFlags is computed from the remaining
monitoring functions associated with this memory region, accord-
ing to the information in the check table. If there is no remaining
monitoring function for this range, the RWT entry is invalidated.
If, instead, the memory region is small, iWatcher finds all the lines
of the region that are currently cached and updates their Watch-
Flags based on the remaining monitoring functions. iWatcher also
updates (and, if appropriately removes) any correspondingVWT
entries.

Caches and VWT are addressed by the physical addresses of
watched memory regions. If there is no paging by the OS, the map-
ping between physical and virtual addresses is fixed for the whole
program execution. In our prototype implementation, we assume
that watched memory locations are pinned by the OS, so that the
page mappings of a watched region do not change until the moni-
toring for this region is disabled using iWatcherOff().

Note that the purpose of using RWT for large regions is to reduce
L2 pollution and VWT space consumption: lines from this region
will only be cached when referenced (not during iWatcherOn())
and, since they will never set their WatchFlags in the cache,they
will not use space in the VWT on cache eviction.

It is possible that iWatcherOn()/iWatcherOff() access
some memory locations sometimes as part of a large re-
gion and sometimes as a small region. In this case, the

iWatcherOn()/iWatcherOff() software handlers, as they add or
remove entries to or from the check table, are responsible for
ensuring the consistency between RWT entries and L2/VWT
WatchFlags.

4.3. Detecting Triggering Accesses

iWatcher needs to identify those loads and stores that should
trigger monitoring functions. A load or store is a triggering access if
the accessed location is inside any large monitored regionsrecorded
in the RWT, or the WatchFlags of the accessed line in L1/L2 areset.

In practice, the process of detecting a triggering access iscom-
plicated by the fact that modern out-of-order processors introduce
access reordering and pipelining. To help in this process, iWatcher
augments each reorder buffer (ROB) entry with aTrigger bit, and
each load-store queue entry with 2 bits that store WatchFlaginfor-
mation.

To keep the hardware reasonably simple, the execution of a mon-
itoring function should only occur when a triggering load orstore
reaches the head of the ROB. At that point, the values of the archi-
tectural registers that need to be passed to the monitoring function
are readily available. In addition, the memory system is consistent,
as it contains the effect of all preceding stores. Moreover,there
is no danger of mispredicted branches or exceptions, which could
require the cancellation of an early-triggered monitoringfunction.

For a load or store, when the TLB is looked up early in the
pipeline, the hardware also checks the RWT for a match. This in-
troduces negligible visible delay. If there is a match, the access is
a triggering one. If there is no match, the WatchFlags in the caches
will be examined to determine if it is a triggering access.

A load typically accesses the memory system before reaching
the head of the ROB. It is at that time that a triggering load will
detect the set WatchFlags in the cache. Consequently, in ourde-
sign, as a load reads the data from the cache into the load queue,
it also reads the WatchFlag bits into the special storage provided in
the load queue entry. In addition, if the RWT or the WatchFlagbits
indicate that the load is a triggering one, the Trigger bit associated
with the load’s ROB entry is set. When the load (or any instruction)
finally reaches the head of the ROB and is about to retire, the hard-
ware checks the Trigger bit. If it is set, the hardware triggers the
corresponding monitoring function.

Stores present a special difficulty. A store is not sent to themem-
ory system until it reaches the head of the ROB. At that point,it is
retired immediately, but it may still cause a cache miss, in which
case it may take a long time to actually complete. In iWatcher, this
would mean that, for stores that do not hit in the RWT, the proces-
sor may have to wait a long time to know whether it is a triggering
access, especially for stores that do not hit in the RWT. During that
time, no subsequent instruction could be retired, as the processor
may have to trigger a monitoring function. To reduce this delay as
much as possible, we change the micro-architecture so that,as soon
as a store address is resolved early in the ROB, a prefetch is issued
to the memory system. Such prefetch brings the data into the cache,
and the WatchFlag bits are read into the special storage in the store
queue entry. If the RWT or the WatchFlag bits indicate that the
store is a triggering one, the Trigger bit in the ROB entry is also
set. With this support, the processor is much less likely to have to
wait when the store reaches the head of the ROB. While issuingthis
prefetch may have implications for the memory consistency model



supported in a multiprocessor environment, we consider thetopic
to be beyond the scope of this paper.

Note that bringing the WatchFlag information into the load-store
queue entries enables correct operation for loads that get their data
directly from the load-store queue. For example, if a store in the
load-store queue has the read-monitoring WatchFlag bit set, then a
load that reads from it will correctly set its own Trigger bit.

4.4. Executing Monitoring Functions

When a triggering load or store is retired, its associated moni-
toring function has to be automatically initiated. Using TLS mech-
anisms, the iWatcher hardware automatically spawns a new mi-
crothread (denoted as microthread 1 in Figure 2(a)) to speculatively
execute the rest of the program after the triggering access,while
the current microthread (denoted as microthread 0 in Figure2(a))
executes the monitoring function non-speculatively. To provide se-
quential semantics (the remainder of the program is semantically
after the monitoring function), data dependencies are tracked by
TLS and any violation of sequential semantics results in thesquash
of the speculative microthread (microthread 1).

(a)Executing a monitoring function. (b) Triggering a monitoring

function from a speculative

microthread.

Figure 2. Examples of monitoring function execution.

Microthread 0 executes the monitoring function by startingfrom
the address stored in the Maincheckfunction register. It is the re-
sponsibility of the Maincheckfunction() to find the monitoring
functions associated with the triggering access and call all such
functions one after another. Note that, although semantically, a
monitoring function appears to programmers like a user-specified
exception handler, the overhead of triggering a monitoringfunc-
tion is tiny with our hardware support. Indeed, while triggering
an exception handler typically needs OS involvement, triggering a
monitoring function in iWatcher is done completely in hardware:
the hardware automatically fetches the first instruction from the
Main checkfunction(). iWatcher can skip the OS because moni-
toring functions are not related to any resource managementin the
system and, in addition, do not need to be executed in privileged
mode. Moreover, the Maincheckfunction() and the check table
are in the same address space as the monitored program. Therefore,
a “bad” program cannot use iWatcher to mess up other programs.

Microthread 1 speculatively executes the continuation of the
monitoring function, i.e., the remainder of the program after the
triggering access. To avoid the overhead of flushing the pipeline,
iWatcher dynamically changes the microthread ID of all the instruc-
tions currently in the pipeline from 0 to 1. Unfortunately, it is possi-
ble that some un-retired load instructions after the triggering access

may have already accessed the data in the cache and, as per TLS,
already updated the microthread ID in the cache line to be 0. Since
the microthread ID on these cache lines should now be 1, the hard-
ware re-touches the cache lines that were read by these un-retired
loads, correctly setting their microthread IDs to 1. There is no such
problem for stores because they only update the microthreadIDs in
the cache at retirement.

It is possible that a speculative microthread issues a triggering
access, as shown on Figure 2(b). In this case, a more speculative
microthread (microthread 2) is spawned to execute the rest of the
program, while the speculative microthread (microthread 1) enters
the Maincheckfunction. Since microthread 2 is semantically after
microthread 1, a violation of sequential semantics will result in the
squash of microthread 2. In addition, if microthread 1 is squashed,
microthread 2 is squashed as well. Finally, if microthread 1com-
pletes while speculative, iWatcher does not commit it; it can only
commit after microthread 1 becomes safe.

Note that, in a CMP-based iWatcher, microthreads should be
allocated for cache affinity. In our Figure 2(a) example, specula-
tive microthread 1 should be kept on the same CPU as the original
program, while microthread 0 should be moved to a different CPU.
This is because microthread 1 continues to execute the program and
is likely to reuse cache state.

4.5. Different Reaction Modes

If a monitoring function fails, iWatcher takes different actions
depending on the function’s ReactMode. Figure 3 illustrates the
three supported reaction modes.ReportMode is the simplest one.
iWatcher treats it the same way as if the monitoring functionhad
succeeded: microthread 0 commits and microthread 1 becomes
safe. If the reaction mode isBreakMode, iWatcher commits mi-
crothread 0 but squashes microthread 1. The program state and
the program counter (PC) of microthread 1 are restored to thestate
it had immediately after the triggering access (Figure 3(b)). The
cache updates of microthread 1 are discarded. At this point,pro-
grammers can use an interactive debugger to analyze the bug.

(a)ReportMode. (b) BreakMode. (c) RollbackMode.

Figure 3. Different reaction modes supported by iWatcher.

If the reaction mode isRollbackMode, iWatcher squashes mi-
crothread 1 and also rolls back microthread 0 to the most recent
checkpoint (the checkpoint at PC in Figure 3(c)). iWatcher can use
support similar to ReEnact [32] to provide this reaction mode.

4.6. Other Issues

Displacements and Cache Misses.When a watched line of small
regions is about to be displaced from the L2 cache, its WatchFlags
are saved in the VWT. The VWT is a small set-associative buffer.



Feature Assertions Hardware Watchpoints DIDUCE iWatcher

Hardware Support? None Simple support TLS support TLS and memory watch support
Type of checks Code-controlled Location-controlled Code-controlled Location-controlled
Reaction modes Abort Interrupt Break or transaction abort Report, break or rollback
Programmer’s effort High High Low Moderate or low with automatic

instrumentation
Language dependent? No No Yes (Java) No
Flexibility Very flexible, program

specific
Inflexible, only supports a few
watchpoints, relies on programmers
or debuggers for checks

Moderately flexible, currently only
supports simple invariance checks

Very flexible, program specific

Cross-module and
cross-developer

No Yes No Yes

Completeness Hard to make sure all pos-
sible places are checked

Detects all accesses May miss some accesses due to
aliasing problems

Detects all accesses

Table 1. Comparison of iWatcher to three other approaches. Completeness refers to whether an approach monitors all accesses to a
watched memory location by construction.

If the VWT needs to take an entry while full, it selects a victim
entry to be evicted, and delivers an exception. The OS then turns on
page protections for the pages that correspond to the WatchFlags
to be evicted from the VWT. Future accesses to these pages will
trigger page protection faults, which will enable the OS to insert
their WatchFlags back into the VWT. However, in our experiments,
we find that a 1024-entry VWT is never full. The reason is that the
VWT only keeps the WatchFlags for watched lines of small regions
that have at some point been displaced from L2.

On an L2 cache miss, as the line is read from memory, the VWT
is checked for a address match. If there is a match, the WatchFlags
for the line are copied to the destination location in the cache. We
do not remove the WatchFlags from the VWT because the memory
access may be speculative and be eventually undone. If thereis
no match, the WatchFlags for the loaded line are set to the default
“un-watched” value. Note that this VWT lookup is performed in
parallel with the memory read and, therefore, introduces negligible
visible delay.

Aside from these issues, caches work as in conventional TLS
systems. In particular, speculative lines cannot be displaced from
the L2. If space is needed in a cache set that only holds speculative
lines, a speculative microthread is squashed to make room. More
details can be found in [32].
Check Table Implementation. The check table is a software ta-
ble. Our current implementation uses one entry for each watched
region. The entries are sorted by start address. To speed-upcheck
table lookup, we exploit memory access locality to reduce the num-
ber of accessed table entries during one search. A table entry con-
tains all arguments of the iWatcherOn() call. If there are multiple
monitoring functions associated with the same location, they are
linked together. Since the check table is a pure software data struc-
ture, it is easy to change its implementation. For example, another
implementation could be to organize it as a hash table. It canbe
hashed with the virtual address of the watched location.

5. Advantages of iWatcher
Based on the previous discussion, we can list the advantagesof

iWatcher. One of them is that it provides location-controlled mon-
itoring. Therefore,all accesses to a watched memory location are
monitored, including “disguised” accesses due to danglingpointers
or wrong pointer manipulations.

Another advantage of iWatcher is its low overhead. iWatcher
only monitors memory operations that truly access a watchedmem-
ory location. Moreover, iWatcher uses hardware to trigger monitor-
ing functions with minimal overhead. Finally, iWatcher uses TLS

to execute monitoring functions in parallel with the rest ofthe pro-
gram, effectively hiding most of the monitoring overhead.

iWatcher is flexible and extensible. Programmers or automatic
instrumentation tools can add monitoring functions. iWatcher is
convenient even for manual instrumentation because programmers
do not need to instrument every possible access to a watched mem-
ory location. Instead, they only need to insert an iWatcherOn() for
a location when they are interested in monitoring this location and
an iWatcherOff() when the monitoring is no longer needed. Inbe-
tween, all possible accesses to this location are automatically mon-
itored. In addition, iWatcher supports three reaction modes, giving
flexibility to the system.

iWatcher is cross-module and cross-developer. A watched lo-
cation inserted by one module or one developer is automatically
honored by all modules and all developers whenever the watched
location is accessed.

iWatcher is language independent since it is supported directly
in hardware. Programs written in any language, including C/C++,
Java or other languages can use iWatcher. For the same reason,
iWatcher can also support dynamic monitoring of low-level system
software, including the operating system.

iWatcher can be used to detect illegal accesses to a memory lo-
cation. For example, it can be used for security checks to prevent
illegal accesses to some secured memory locations. In our exper-
iments, we have used iWatcher to protect the return address in a
program stack to detect stack-smashing attacks [6, 11, 28, 47].

Table 1 summarizes the differences between iWatcher and the
three related approaches discussed in Section 2. In the table, we
select DIDUCE [13] as a state-of-the-art representative ofdynamic
checkers. DIDUCE is a tool for debugging Java programs. It can
dynamically infer some simple program invariants and then dynam-
ically perform invariant checks to detect bugs. Like other dynamic
checkers, DIDUCE requires instrumentation. The instrumentation
overhead slows down execution by 6-20 times. To reduce the over-
head, the authors use TLS to execute the checks in parallel with the
main program [29].

From the table, we see that iWatcher differs from DIDUCE in
several major ways. Most importantly, while DIDUCE performs
code-controlled monitoring, iWatcher performs location-controlled
monitoring, therefore enjoying the benefits described in Section 2.1.
In particular, if we applied the DIDUCE mechanism to C/C++
codes, due to aliasing problems, we would need to insert potentially
many more checks than necessary, as we lack accurate information
at instrumentation time. In addition, we may miss some accesses
that need to be instrumented.



Another difference between iWatcher and DIDUCE is that the
former is language independent and can work for any programs,
even operating systems. DIDUCE, instead, currently works only
for Java programs, and some of its techniques are not applicable
to C/C++ programs. Finally, iWatcher is cross-module and cross-
developer.

We note that iWatcher is complementary to DIDUCE. DIDUCE
could provide iWatcher with automatic invariant inferences, while
iWatcher could provide DIDUCE with an efficient location-based
monitoring capability.

6. Evaluation Methodology

6.1. Simulated Architecture

To evaluate iWatcher, we have built an execution-driven sim-
ulator that models a workstation with a 4-context SMT processor
augmented with TLS support and iWatcher functionality. Thepa-
rameters of the architecture are shown in Table 2. As seen in the
table, each microthread is allocated 32 load-store queue entries. We
model the overhead of spawning a monitoring-function microthread
as 5 cycles of processor stall visible to the main-program thread.
The reaction mode used in all experiments is ReportMode, so that
all programs can run to completion.

CPU frequency 2.4GHz ROB size 360
Fetch width 16 I-window size 160
Issue width 8 Int FUs 6
Retire width 12 Mem FUs 4
Ld/st queue entries 32/thread FP FUs 4
Spawn overhead 5 cycles Reaction mode ReportMode
L1 cache 32KB, 4-way, 32B/line, 3 cycles latency
L2 cache 1MB, 8-way, 32B/line, 10 cycles latency
VWT 1024 entries, 8-way, 2B/entry
LargeRegion 64Kbytes
RWT 4 entries, 32bits for the start and end address
Memory 200 cycles latency

Table 2. Parameters of the simulated architecture. Latencies are
given as unloaded round-trips from the processor.

To isolate the benefits of TLS, we also evaluate the same archi-
tecture without TLS support. On a triggering access, the processor
first executes the monitoring function, and then proceeds toexecute
the rest of the program. Finally, we simulate the same architecture
with no iWatcher or TLS support. For the evaluation without TLS
support, the single microthread running is given a 64-entryload-
store queue.

6.2. Valgrind

In our evaluation, we compare the functionality and overhead
of iWatcher to Valgrind [36], an open-source memory debugger for
x86 programs. Valgrind is a binary-code dynamic checker to detect
general memory-related bugs such as memory leaks, memory cor-
ruption and buffer overflow. It simulates every single instruction of
a program. Because of this, it finds errors not only in a program but
also in all supporting dynamically-linked libraries. Valgrind takes
control of a program before it starts. The program is then runon
a synthetic x86 CPU, and its every memory access is checked. All
detected errors are reported.

Valgrind provides an option to enable or disable memory leak
detection. We also enhanced Valgrind to enable or disable variable
uninitialization checks and invalid memory access checks (checks
for buffer overflow and invalid accesses to freed memory locations).

In our experiments, we run Valgrind on a real machine with a 2.6
GHz Pentium 4 processor, 32-Kbyte L1 cache, 2-Mbyte L2 cache,
and 1-Gbyte main memory. Since iWatcher runs on a simulator,we
cannot compare the absolute execution time of iWatcher withthat
of Valgrind. Instead, we compare their relative execution overheads
over runs without monitoring.

6.3. Tested Applications

We have conducted two sets of experiments. The first one uses
applications with bugs to evaluate the functionality and overheads
of iWatcher for software debugging. The second one systematically
evaluates the overheads of iWatcher to monitor applications without
bugs.

The applications used in our first set of experiments containvari-
ous bugs, including memory leaks, memory corruption, buffer over-
flow, stack-smashing attacks, value invariant violations and out-
bound pointers. These applications are: bc-1.03 (an arbitrary pre-
cision calculator language), cachelib (a cache managementlibrary
developed at UIUC), and gzip (a SPECINT 2000 application run-
ning the Test input data set). Of these codes, bc-1.03 and cachelib
already had bugs, while we injected some common bugs into gzip.

Table 3 shows the details of the bugs and monitoring functions.
For gzip, we evaluate the case of single bugs: stack-smashing,
memory corruption, buffer overflow (dynamic buffer overflowand
static array overflow), memory leak, or value invariant violation.
We also evaluate the case of a combination of bugs (memory leak,
memory corruption, and dynamic buffer overflow). Table 3 shows
the names given to each buggy application.

For fair comparison between Valgrind and iWatcher, in Valgrind
we enable only the type of checks that are necessary to detectthe
bug(s) in the corresponding application. For example, for gzip-ML,
we enable only the memory leak checks. Similarly, for gzip-MC
and gzip-BO1, we enable only the invalid memory access checks.
In all our experiments, variable uninitialization checks are always
disabled.

To detect bugs such as stack smashing, memory corruption, dy-
namic buffer overflow, memory leak, or static array overflow,our
iWatcher monitoring functions are very general. They monitor all
possible relevant locations without using program-specific semantic
information. In addition, all iWatcherOn/Off() calls can be inserted
by an automated tool without any semantic program information.
We enforce these rules to have a fair comparison with Valgrind,
which does not have any semantic program information. There-
fore, we feel that the comparison is fair.

To detect other bugs, such as value invariant violations andout-
bound pointers, we need program-specific information. Valgrind
cannot detect these bugs, whereas iWatcher can.

For gzip with memory leak, iWatcher not only detects all dy-
namic memory buffers that are not freed; it also ranks buffers based
on their access recency. Buffers that have not been accessedfor
a long time are more likely to be memory leaks than the recently-
accessed ones.

Finally, our second set of experiments evaluates iWatcher
overheads by monitoring memory accesses in two unmodified
SPECINT 2000 applications running the Test input data set, namely
gzip and parser. We measure the overhead as we vary the percent-
age ofdynamicloads monitored by iWatcher and the length of the
monitoring function.



Application Bug Class Type of Bug Description Monitoring Function
Monitoring

gzip-STACK stack
smashing

general In function “huft free()”, the return address
in the program stack is corrupted.

When entering a function, call iWatcherOn() on the locationholding
the return address. Turn off monitoring immediately beforethe func-
tion returns.

gzip-MC memory
corruption

general In function “huft free()”, dereference a
pointer after it is freed up.

Monitor all freed locations. Any access to such locations isa bug. Af-
ter a free buffer is re-allocated, the monitoring for the buffer is turned
off.

gzip-BO1 dynamic
buffer

overflow

general In function “huft build()”, access an ele-
ment past the boundary of the dynamically-
allocated buffer.

Add some padding to all buffers. The padded locations are monitored
by iWatcher. Any access to them is a bug.

gzip-ML memory leak general In function “huft free()”, only free the first
node of the linked list but not other nodes.

Monitor all accesses to heap objects. Each access to a heap object
updates its time-stamp. Objects that have not been accessedfor a long
time are likely to be memory leaks.

gzip-COMBO combination
of bugs

general Combination of the bugs in gzip-ML, gzip-
MC, and gzip-BO1.

Combines the monitoring in gzip-ML, gzip-MC, and gzip-BO1.

gzip-BO2 static array
overflow

general In function “huft build()”, write outside of a
static array.

Similar to gzip-BO1.

gzip-IV1 value invariant
violation

program
specific

In function “huft build()”, variable “hufts”
is corrupted due to memory corruption.

Any write to this location triggers an invariant check.

gzip-IV2 value invariant
violation

program
specific

In function “inflate()”, an unusual value is
stored into the variable “hufts”.

Similar to gzip-IV1.

cachelib-IV value invariant
violation

program
specific

In option.c:line 90, initialize variable
“conf→algos” to 0.

Similar to gzip-IV1.

bc-1.03 outbound
pointer

program
specific

In dc-eval.c:line 498-503, pointer “s” is out-
side of the array in some cases.

Use a “rangecheck()” function to check the value of “s” each time “s”
is written.

Table 3. Bugs and monitoring functions. Type of monitoring indicates whether the monitoring function uses program-specific semantic
information or, instead, monitors all possible relevant locations without using program-specific semantic information. We call the second
approach “general” monitoring.

7. Experimental Results

7.1. Overall Results

Table 4 compares the effectiveness and the overhead of Valgrind
and iWatcher. For each of the buggy applications considered, the
table shows whether the schemes detect the bug and, if so, theover-
head they add to the program’s execution time. Recall from Sec-
tion 6 that Valgrind’s times are measured on a real machine, while
iWatcher’s are simulated.

Application Valgrind iWatcher
Bug Overhead Bug Overhead

Detected? (%) Detected? (%)

gzip-STACK No - Yes 80.0
gzip-MC Yes 1466 Yes 8.7
gzip-BO1 Yes 1514 Yes 10.4
gzip-ML Yes 936 Yes 37.1

gzip-COMBO Yes 1650 Yes 42.7
gzip-BO2 No - Yes 10.5

gzip-IV1 No - Yes 10.5
gzip-IV2 No - Yes 9.6

cachelib-IV No - Yes 3.8
bc-1.03 No - Yes 23.2

Table 4. Comparing the effectiveness and overhead of Valgrind
and iWatcher.

Consider effectiveness first. Valgrind can detect memory cor-
ruption, dynamic buffer overflow, memory leak bugs, and the com-
bination of them. iWatcher, instead, detects all the bugs considered.
iWatcher’s effectiveness is largely due to its flexibility to specialize
the monitoring function.

The table also shows that iWatcher has a much lower overhead
than Valgrind. For bugs that can be detected by both schemes,
iWatcher only adds 9-43% overhead, a factor of 25-169 smaller
than Valgrind. For example, in gzip-COMBO, where both iWatcher
and Valgrind monitor every access to dynamically-allocated mem-
ory, iWatcher only adds 43% overhead, which is 39 times less than
Valgrind. iWatcher’s low overhead is the result of triggering mon-
itoring functions only when the watched locations are actually ac-

cessed, and of using TLS to hide monitoring overheads. The differ-
ence in overhead between Valgrind and iWatcher is larger in gzip-
MC, where we are looking for a pointer that de-references a freed-
up location. In this case, iWatcher only monitors freed memory
buffers, and any triggering access uncovers the bug. As a result,
iWatcher’s overhead is 169 times smaller than Valgrind’s. Finally,
our results with Valgrind are consistent with the numbers (25-50
times slowdown) reported in a previous study [37].

If we consider all the applications, we see that iWatcher’s over-
head ranges from 4% to 80%. This overhead comes from three
effects. The first one is the contention of monitoring-function mi-
crothreads and the main program for processor resources (such as
functional units or fetch bandwidth) and cache space. Such con-
tention has a high impact when there are more microthreads exe-
cuting concurrently than hardware contexts in the SMT processor.
In this case, the main-program microthread cannot run all the time.
Instead, monitoring-function and main-program microthreads share
the hardware contexts on a time-sharing basis.

Columns 2 and 3 of Table 5 show the fraction of time that there is
more than one microthread running or more than four microthreads
running, respectively. These figures include the main-program mi-
crothread. Note that having more than four microthreads run-
ning does not mean that the main-program microthread starves:
the scheduler will attempt to share all the contexts among all mi-
crothreads fairly. From the table, we see that three applications use
more than 1 microthread for more than 1% of the time. Of those,
there are two that use more than 4 microthreads for a significant
fraction of the time. Specifically, this fraction is 15.2% for gzip-
COMBO and 16.9% for gzip-ML. Note that these applications have
high iWatcher overhead in Table 4. bc-1.03 is a short program, and
even a little contention has a significant impact on execution time.

A second source of overhead is the iWatcherOn/Off() calls.
These calls consume processor cycles and, in addition, bring mem-
ory lines into L2, possibly polluting the cache. The overhead caused
by iWatcherOn/Off() can not be hidden by TLS. In practice, their
effect is small due to the small number of calls, except in gzip-



Application % Time % Time # Triggering # iWatcher- Size of Size of Max Monitored Total Monitored
With > 1 With > 4 Accesses per On/Off() iWatcherOn/Off() Monitoring Memory Size at Memory Size

Microthread Microthreads 1M Instructions Calls Call (Cycles) Function (Cycles) a Time (Bytes) (Bytes)

gzip-STACK 0.1 0.0 0.2 4889642 20.7 22.4 40 19558568
gzip-MC 0.1 0.0 0.4 239 1291.3 24.4 246880 246880
gzip-BO1 0.1 0.0 0.4 486 210.4 177.0 80 1944
gzip-ML 23.1 16.9 13008.9 243 582.6 47.4 6613600 6847616

gzip-COMBO 26.2 15.2 13009.6 243 1082.3 45.2 6847616 6847616
gzip-BO2 0.1 0.0 0.2 880 59.0 24.8 32 3520

gzip-IV1 0.1 0.0 0.7 132 40.5 21.7 4 528
gzip-IV2 0.1 0.0 1.1 1 83.0 23.0 4 4

cachelib-IV 0.4 0.0 91.6 10 129.0 16.5 40 40
bc-1.03 2.2 0.0 907.2 1 81.0 134.2 4 4

Table 5. Characterizing iWatcher execution.

STACK. Indeed, Columns 5 and 6 of Table 5 show the absolute
number of iWatcherOn/Off() calls and the average size of an in-
dividual call. Except for gzip-STACK, the product of numberof
calls times the size per call is tiny compared to the hundredsof
millions of cycles taken by the application to execute. For these
cases, it can be shown that, even if every line brought into L2by
iWatcherOn/Off() calls causes one additional miss, the overall ef-
fect on program execution time is very small.

The exception is gzip-STACK, where the number of
iWatcherOn/Off() calls is huge (4,889,642). These calls in-
troduce a large overhead that cannot be hidden by TLS. Moreover,
iWatcherOn/Off() calls partially cripple some conventional com-
piler optimizations such as register allocation. The result is worse
code and additional overhead. Overall, while for most applications
the iWatcherOn/Off() calls introduce negligible overhead, for
gzip-STACK, they are responsible for most of the 80% overhead of
iWatcher.

Finally, there is a third, less important source of overhead
in iWatcher, namely the spawning of monitoring-function mi-
crothreads. As indicated in Section 6, each spawn takes 5 cycles.
Column 4 of Table 5 shows the number of triggering accesses per
million instructions. Each of these accesses spawns a microthread.
From the table, we see that this parameter varies a lot acrossap-
plications. However, given the small cost of each spawn, thetotal
overhead is small.

Overall, we conclude that the overhead of iWatcher can be high
(37-80%) if the application needs to execute more concurrent mi-
crothreads than contexts provided by the SMT processor, or the
application calls iWatcherOn/Off() very frequently. For the other
applications analyzed, the overhead is small, ranging from4% to
23%.

Finally, the last three columns of Table 5 show other parameters
of iWatcher execution: average monitoring function size, maximum
monitored memory size at a time, and total monitored memory size,
respectively. We can see that, while most monitoring functions take
less than 25 cycles, there are a few applications where monitor-
ing functions take 45-177 cycles. In some cases such as gzip-ML
and gzip-COMBO, these relatively expensive monitoring functions
occur in applications with frequent triggering accesses. When this
happens, the fraction of time with more than 4 microthreads is high,
which results in high iWatcher overhead (Table 4).

The last two columns show that in some applications such as
gzip-ML and gzip-COMBO, iWatcher needs to monitor many ad-
dresses. In this case, the check table will typically contain many
entries. Note, however, that even in this case, the size of the mon-
itoring function, which includes the check table lookup, isstill not

big. This is because our check table lookup algorithm is veryeffi-
cient for the applications evaluated in our experiments.

7.2. Benefits of TLS

As indicated in Section 6, our experiments are performed us-
ing ReportMode. In this reaction mode, TLS speeds-up execu-
tion by running monitoring-function microthreads in parallel with
each other and with the main program. To evaluate the effect of
not having TLS, we now repeat the experiments executing both
monitoring-function and main-program code sequentially,instead
of spawning microthreads to execute them in parallel.

Figure 4 compares the execution overheads of iWatcher and
iWatcher without TLS for all the applications. The amount ofmon-
itoring overhead that can be hidden by TLS in a program is the
product of Columns 4 and 7 in Table 5. For programs with substan-
tial monitoring, TLS reduces the overheads. For example, ingzip-
COMBO, the overhead of iWatcher without TLS is 61.4%, while
it is only 42.7% with TLS. This is a 30% reduction. As monitor-
ing functions perform more sophisticated tasks such as DIDUCE’s
invariant inference [13], the benefits of TLS will become more pro-
nounced.

Figure 4. Comparing iWatcher and iWatcher without TLS.

For programs with little monitoring, the product of Columns4
and 7 in Table 5 is small. For these applications, TLS does not
provide benefit, because there is not much overhead that can be
hidden by TLS.

Overall, we recommend supporting TLS, as it reduces the over-
head of iWatcher in some applications. We also note that TLS
can be instrumental in efficiently supporting RollbackMode(Sec-
tion 4.5).



7.3. Sensitivity Study

To measure the sensitivity of iWatcher’s overhead, we artificially
vary the fraction of triggering accesses and the size of the monitor-
ing functions. We perform the experiments on the bug-free gzip and
parser applications.

In a first experiment, we trigger a monitoring function everyN th
dynamicload in the program1, whereN varies from 2 to 10. The
function walks an array, reading each value and comparing itto a
constant for a total of 40 instructions. The resulting execution
overhead for iWatcher and iWatcher without TLS is shown in Fig-
ure 5. The figure shows that the overhead of iWatcher with frequent
triggering accesses is tolerable. Specifically, the gzip overhead is
66% for 1 trigger out of 5 dynamic loads, and 180% for 1 trigger
out of 2 loads. The parser overheads are a bit higher, namely 174%
for 1 trigger out of 5 loads, and 418% for 1 trigger out of 2 loads.
If iWatcher does not support TLS, however, the overheads go up:
273% for gzip and 593% for parser, respectively, for 1 trigger out
of 2 loads.

gzip parser

Figure 5. Varying the fraction of triggering loads.

In a second experiment, we vary the size of the monitoring func-
tion. We use the same function as before, except that we vary the
number of instructions executed from 4 to 800. The function is trig-
gered in 1 out of 10 dynamic loads. The resulting execution over-
head is shown in Figure 6. The figure again shows that the iWatcher
overheads are modest. For 200-instruction monitoring functions,
the overhead is 65% for gzip and 159% for parser. In iWatcher
without TLS, the overhead is 173% for gzip and 335% for parser.
As we increase the monitoring function size, the absolute benefits
of TLS increase, as TLS can hide more monitoring overhead.

gzip parser

Figure 6. Varying the size of the monitoring function.

1For parser, we skip the program’s initialization phase, which lasts about
280 million instructions, because its behavior is not representative of steady
state.

8. Related Work

Our work builds upon many previous proposals to improve soft-
ware robustness. Due to space limitations, we briefly describe only
related works that have not been described in previous sections.

Many tools have been proposed for dynamic execution mon-
itoring. Well-known examples include Purify [14], Intel thread
checker [17], Eraser [33], StackGuard [6], DIDUCE [13], Val-
grind [36], CCured [5, 27], and many others [1, 23, 30, 31]. Most
of these tools rely on instrumentation to perform dynamic checks.
Consequently, to check all possible accesses to a given location,
they typically need to instrument more than necessary. More-
over, most dynamic checkers impose significant run-time overhead.
iWatcher innovates with efficient and flexible location-controlled
monitoring capability.

Schnarr and Larus have proposed using unused processor cycles
to reduce overhead forcode-controlledmonitoring [34]. Our work
differs from theirs in that iWatcher provides convenient, flexible ar-
chitectural support to performlocation-controlledmonitoring, and
uses TLS to hide monitoring overheads.

Austin et al. [1] have proposed detecting errors in pointer or
array accesses by validating dereferences against the pointer’s at-
tributes, such as bounds. This method can prevent a pointer pointing
to an array from incorrectly moving out of bounds, but cannotdetect
errors for general pointers such as links between structures. More-
over, it performs checks sequentially and therefore can addlarge
execution overheads (130-540%). iWatcher can be used to reduce
these overheads. Moreover, iWatcher extends dynamic monitoring
from out-of-bound checks for array accesses to location-controlled
checks for any general memory accesses.

To improve software debugging, several hardware supports have
been proposed beyond hardware-assisted watchpoints [15, 16, 18,
39], including the proposal of Oplinger and Lam [29], ReEn-
act [32], and the Flight Data Recorder [48]. Oplinger and Lam
use TLS to execute invariant checks to detect bugs in parallel with
the main program. ReEnact uses the state buffering, rollback, and
re-execute features of TLS to debug data races. The Flight Data
Recorder logs coherence operations into a file that can potentially
be used to support replay for debugging. Our work is different,
since iWatcher’s contribution is to provide efficient and flexible ar-
chitectural support to monitor memory locations.

Our work is related to previous work on fine-grain access
control [35, 46]. For example, Mondrian Memory Protection
(MMP) [46] provides access control at word granularity using a
“protection look-aside buffer” (PLB) to record protectioninfor-
mation. MMP can potentially be used to implement location-
controlled monitoring. However, like hardware-assisted watch-
points, it needs to raise an exception and, therefore can addsig-
nificant overhead.

Our work is also related to some of the classic work on
capability-based architectures [10, 21], protection-enhanced ar-
chitectures [19], hardware support for security [11, 22, 43, 47],
TLS [4, 38, 41, 44], and hardware support for instruction-level pro-
filing [7].

9. Conclusions and Future Work

This paper has presentediWatcher, novel architectural support
for minimal-overhead location-controlled monitoring. iWatcher de-



tects all accesses to a watched memory location, including those by
astray pointer dereferences. To reduce overhead and support roll-
back, iWatcher leverages Thread-Level Speculation (TLS).We have
evaluated iWatcher on applications with various bugs. iWatcher de-
tects all bugs evaluated in our experiments with only a 4-80%ex-
ecution overhead. In contrast, a well-known open-source bug de-
tector called Valgrind induces orders of magnitude more overhead,
and can only detect a subset of the bugs. Moreover, even with 20%
of the dynamic loads monitored in a program, iWatcher only adds
66-174% overhead.

Even though our experiments have only demonstrated the use of
iWatcher in detecting several types of bugs, iWatcher can also be
used to detect many other types of bugs such as uninitializedreads
and data races. In addition, iWatcher also provides a framework
for general-purpose debugging. Using performance debugging as
one example, iWatcher can be used for value and address profiling,
which can then guide data placement or instruction reordering to
reduce cache misses. Another example is the use of iWatcher in
BreakMode, which allows it to interface to interactive debuggers
and efficiently support watchpoints and conditional breakpoints.

We are in the process of extending this work in several ways.
First, we plan to compare iWatcher to other dynamic checkersbe-
yond Valgrind. Moreover, we will evaluate iWatcher for multi-
threaded programs, which often exhibit hard-to-debug bugssuch
as data races and deadlocks. In addition, we plan to test moreap-
plications, especially large server programs with real bugs. In order
to do this, we are in the process of upgrading our simulation infras-
tructure. We are also seeking help from the OS to handle the VWT
overflow issue. Finally, note that, in this study, we have inserted
all iWatcherOn/Off() calls manually. It is more convenientto use
a compiler or an instrumentation tool to insert them. It is also in-
teresting to combine iWatcher with an invariant-inferencetool such
as DIDUCE [13], which can specify watched locations and their
associated monitoring functions. We are addressing these issues.
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