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Abstract languages in industry. As a result, many bugs often remajmon
grams even after aggressive static checking.

Recent impressive performance improvements in computer ar Another approach is to monitor execution dynamically, with
chitecture have not led to significant gains in ease of delbggg instrumentation inserted in the code that monitors invasiaand
Software debugging often relies on inserting run-time vsafe  reports violations as errors. The strength of this approach
checks. In many cases, however, it is hard to find the rootecaushat the analysis is based on actual execution paths andaaecu
of a bug. Moreover, program execution typically slows dovgz s values of variables and aliasing information. Examples wpf d
nificantly, often by 10-100 times. namic monitors include Purify [14], Valgrind [36], Intel rad

To address this problem, this paper introducesltfielligent  checker [17], DIDUCE [13], Eraser [33], CCured [5, 27], arey
Watcher (iWatcher) novel architectural support to monitor dy- tools [1, 6, 23, 30, 31].
namic execution with minimal overhead, automatically, fled- Unfortunately, most dynamic checkers suffer from two lawit
ibly. iWatcher associates program-specified monitorimgcfions  tions. First, they are often computationally expensive.e @ma-
with memory locations. When any such location is accesded, tjor reason is their large instrumentation cost. Anothesoeais
monitoring function is automatically triggered with lowenhead. that dynamic checkers may instrument more places than seages
To further reduce overhead and support rollback, iWatcker ¢ due to lack of accurate information at instrumentation tinfes
leverage Thread-Level Speculation (TLS). To test iWatoeruse  a result, some dynamic checkers slow down a program by 6-30
applications with various bugs. Our results show that iWatale- times [13, 33], which makes such tools undesirable for pctido
tects many more software bugs than Valgrind, a well-knowenep runs. Moreover, some timing-sensitive bugs may never owthr
source bug detector. Moreover, iWatcher only induces a%-80these slowdowns.
execution overhead, which is orders of magnitude less thdn V. Second, most dynamic checkers rely on compilers or pre-
grind. Even with 20% of the dynamic loads monitored in a pangr processing tools to insert instrumentation and, therefare lim-
iWatcher adds only 66-174% overhead. Finally, TLS is effecat  ited by imperfect variable disambiguation. Consequestiyne ac-
reducing overheads for programs with substantial momitpri cesses to a monitored location may be missed by the insttamen
tion tool. Because of this reason, some bugs are caught rateth |
than when they actually occur, which makes it hard to find twe r
cause of the bug. The following C code gives a simple example.

1.1. Motivation int x, *p;

1. Introduction

/* assume invariant: x = 1 */
Despite costly efforts to improve software-developmenthoe- ..
ologies, software bugs in deployed codes continue to thaften p = foo(); /* a bug: p points to x incorrectly */
accounting for as much as 40% of computer system failurels [24' P = 5 /* line A: corruption of x */
Software bugs can crash systems, making services unaeadgb
in the form of “silent” bugs, corrupt information or genexatrong
outputs. According to NIST [26], software bugs cost the lé&n-
omy an estimated $59.5 billion annually, or 0.6% of the GDP! ) ) . . .
.While z is corrupted in line A, the bug is not detected until the
There are several approaches to debug codes. One approach is . ) - ;
. . ; Invariant check at line B. Due to the difficulty of performipgrfect
to perform checks statically. Examples of this approachtuite . . . . : .
. : ) pointer disambiguation, it may be hard for a dynamic chect&er
explicit model checking [25, 42] and program analysis [313]. . . - . .
. 2 - know that it needs to insert an invariant check after line A.
Most static tools require significant involvement of the gmam-

mer to write specifications or annotate programs. In aduljtiost -LO asIS|tst| sgfﬁtwaze Sd ebg%i'\g% seve{ial procests for aro:m&ex:t.
static tools are limited by aliasing problems and other citeriime such as Intel xcb and sun provide support for watctpoin

limitations. This is especially the case for programs writin un- to monitor several programmer-specified memory locatiags1s,

safe languages such as C or C++, the predominant programmi% ' 45]2 When a Watche_d memory location is accessed, th_e hard
re triggers an exception that is handled by the debugdes |

*This work was supported in part by NSF under grants CCR-03256 then up to the.programmer to ma.nually.check the progr_anj.state
EIA-0072102, and CHE-0121357; by DARPA under grant F3080-  While watchpoints are a good starting point, they have séViemi-
0078; by an IBM SUR grant; and by additional gifts from IBM aimtkl. tations. First, they do not suppdow-overheacchecks on variable

I nvariant Check(x == 1); /* line B */
z = Array[x];




valuesautomatically Since exceptions are expensive, it would beDynamic Checkers. Dynamic checkers are automated tools that

very inefficient to use them for dynamic bug detection dupng-
duction runs. Second, most architectures only support dfthof
watchpoints (four in Intel x86). Therefore, it is hard to weatch-
points for dynamic monitoring in production runs, which vees
efficiency and watching many memory locations.

1.2. Our Approach

This paper introduces thatelligent Watcher (iWatchernovel
architectural support to monitor dynamic execution wittini-
mal overhead automatically and flexibly. iWatcher associates
program-specified monitoring functions with memory looas.
When any such location is accessed, the monitoring fundtian-
tomatically triggered with low overhead. To further redumer-

detect common bugs at run time. For example, DIDUCE [13]-auto
matically infers likely program invariants, and uses thendétect
program bugs. Purify [14] and Valgrind [36] monitor memoig a
cesses to detect memory leaks and some simple instancesref me
ory corruption, such as freeing a buffer twice or reading aimiu
tialized memory location. StackGuard [6] can detect sonféebu
overflow bugs, which have been a major cause of securitylattac
Eraser [33] can detect data races by dynamically trackiag¢h of
locks held during program execution. These tools usuakyoosn-
pilers or code-rewriting tools such as ATOM [40], EEL [20]dan
Dyninst [2] to instrument programs with checks.

While this approach is promising, dynamic checkers oftéfesu
from the following limitations: (1) aliasing problems, esjally in

head and support rollback, iWatcher can leverage ThreadiLe C/C++ programs, (2) high run-time overhead, (3) hard-cdolsgl

Speculation (TLS). The main advantages of iWatcher are:

e It monitors all accesses to the watched memory locations.

detection functionality, (4) language specificity, anddBficulty to
work with low-level code.

Consequently, it catches hard-to-find bugs such as updatggrdware-Assisted Watchpoints. Hardware-assisted watch-
through aliased pointers and stack-smashing attacks cofoints [15, 18, 39] use simple hardware support to watch a

monly exploited by viruses.

e It has low overhead because it (i) only monitors memory in
structions thatruly access the watched memory locations

(ii) uses minimal-overhead hardware-supported triggeah

user-selected memory location. When a watched location is

accessed by the program, an exception is handled by andtitera

debugger such as gdb. Then, the state of the process canrhe exa

ined by programmers using the debugger. The hardware suippor

monitoring functions, and (jii) can leverage TLS to executd’rovided through a few special debug registers. Watchpains

monitoring functions in parallel with the program.

designed to be used in an interactive debugger. For norattiee
execution monitoring, they are both inflexible and inefiitie

e ltis flexible in that it can support a wide range of checks, inThey do not provide a way to associate an automatic checketo th
cluding program-specific checks. Moreover, iWatcher is lanaccess of a watched location. Moreover, they require annskge

guage independent, cross-module and cross-developer.

exception when a watched location is accessed. Finallyt mos

We evaluate iWatcher using buggy applications with memorgrchitectures only support a few watchpoints (four in l'ste86).

corruption, memory leaks, buffer overflow, value invariaitla-
tions, outbound pointers, and smashed stacks. iWatchectdell

Summary. We classify the dynamic monitoring methods into two
categories:

the bugs evaluated in our experiments with only a 4-80% execu

tion overhead. In contrast, a well-known open-source bugotier
called Valgrind induces orders of magnitude more overhaad,

can only detect a subset of the bugs. Moreover, even with 20% o

the dynamic loads monitored in a program, iWatcher only &fds
174% overhead. Finally, TLS is effective at reducing ovardsefor
programs with substantial monitoring.

This paper is organized as follows. Section 2 briefly dessrib
some background. Sections 3, 4, and 5 describe iWatcherts fu

tionality, architectural design, and advantages. Sest®mand 7
present the evaluation methodology and experimentalteesséc-
tion 8 discusses related work and Section 9 concludes.

2. Background
2.1. Dynamic Execution Monitoring

Many methods have been proposed for dynamic code monitor-
ing. The most commonly used ones are assertions, dynamik-che

ers, and watchpoints.

Assertions. Assertions are inserted by programmers to perfor

sanity checks at certain places. If the condition specifiean as-
sertion is false, the program aborts. Assertions are oneeofrtost

commonly used methods for debugging. However, they can a

significant overhead to program execution. Moreover, itfiero
hard to identify all the places where assertions should &egpol.

e Code-Controlled Monitoring (CCM).Monitoring is per-
formed only at special points in the program. Assertions and
most dynamic checkers belong to CCM because they only
check at assertions or instrumentation points.

e Location-Controlled Monitoring (LCM)Monitoring is asso-
ciated directly with memory locations and therefore all ac-
cesses to such memory locations are monitored. Hardware-
assisted watchpoints and iWatcher belong to this category.

LCM has two advantages over CCM: (1) LCM monitailsac-
cesses to a watched memory location using all possiblehtaria
names or pointers, whereas CCM may miss some accessesédecaus
of pointer aliasing; (2) LCM monitors only those memory nust
tions thattruly access a watched memory location, whereas CCM
may need to instrument at many unnecessary points due tadke |
of accurate information at instrumentation time. TherefdtCM
can be used to detect both invariant violations and illegeésses

o a memory location, whereas it may be difficult and too espen

for CCM to check for illegal accesses.

(?dZ. Thread-Level Speculation (TLS)

TLS is an architectural technique for speculative pariation
of sequential programs [4, 38, 41, 44]. TLS support can b# bui



on a multithreaded architecture, such as simultaneousthratd-
ing (SMT) or chip multiprocessor (CMP) machines. With TLiSe t
execution of a sequential program is divided into a sequehng-
crothreadqalso called tasks, slices, or epochs). These microthrea
are then executed speculatively in parallel, while spdwatiware
detects violations of the program’s sequential semanting.viola-
tion results in squashing the incorrectly executed miceztls and
re-executing them. To enable squash and re-execution,ehsny
state of each speculative microthread is typically buffénecaches
or special buffers. When a microthread finishes its exenudiod

starting atM emAddr. The WatchFlag specifies what types of
accesses to this memory region should be monitored. lt&\an
be “READONLY”, “WRITEONLY", or “READWRITE?”, in which
dase the monitoring function is triggered on a read access w
access or both, respectively.

At a triggering accesgan access to a monitored memory loca-
tion), the hardware automatically initiates the monitgrfanction
associated with this memory location. The architecturasgashe
values ofParam1 throughParamN to the monitoring function.
In addition, it also passes information about the trigggrcess,

becomes safe, it can commit. Committing a microthread nsergéncluding the program counter, the type of access (load arest

its state with the safe memory. To guarantee sequentialrgesa
microthreads commit in order.

word, half-word, or byte access), reaction mode, and the amgm
location being accessed. It is the monitoring functiongpansibil-

iWatcher can leverage TLS to reduce monitoring overhead arity to perform the check.

to support rollback and re-execution of a buggy code regd@. [

A monitoring function can have side effects and can read and

For our design, we assume an SMT machine, and that the speculaite variables without any restrictions. To avoid recuesirigger-

tive memory state is buffered in caches. However, we beligire
iWatcher design can be easily ported to other TLS architestu

In our design, each cache line is tagged with the ID of the mi-

crothread to which the line belongs. Moreover, for each siagive

microthread, the processor contains a copy of the initebsdf the
architectural registers. This copy is generated when thewdptive
microthread is spawned and is freed when the microthreadnitan
Itis used in case the microthread needs to be rolled back.

The TLS mechanisms for in-cache state buffering and rokbac

can be reused to support incremental rollback and re-execat
the buggy code [32]. To do this, basic TLS is modified slighuyy
postponing the commit time of a successful microthread. asid
TLS, a microthread can commit when it completes and all islpr
cessors have committed. We say that such a microthreadds:
To support the rollback of buggy code, a ready microthread-co

mits only in one of two cases: when we need space in the cache an
when the number of uncommitted microthreads exceeds aircerta

threshold. With this support, a ready but uncommitted nifmead
can still be asked to rollback. This feature can be used tpatp
one of the iWatcher modes (Section 4.5).

3. iWatcher Functionality

iWatcher provides high-flexibility and low-overhead dyriam
execution monitoring. It associates program-specifieditoong
functions with memory locations. When any such locationds a
cessed, the monitoring function associated with it is aatiocally
triggered and executed.

iWatcher provides two system calls to turn on and off monitor
ing on a memory location, namelyWatcherOnand iWatcherOff
These calls can be inserted in programs either automaticglan
instrumentation tool or manually by programmers. The foitg
is theiWatcherOninterface:

i Wat cher On( MemAddr, Length, WatchFl ag, React Mbde,
Moni t or Func, Paraml, Paran?, Par amN)

/* MemAddr: starting address of the nenory region*/

/* Length: length of the nenory region */

/* WAt chFl ag: types of accesses to be nonitored */

/* React Mbde: reaction node */

/*
/*

Moni t or Func: nonitoring function */
Paramil. .. Paran\: paraneters of MonitorFunc */

If a program makes such a call, iWatcher associates momgtori
function Monitor Func() with a memory region oLength bytes

ing of monitoring functions, no memory access performedima
monitoring function can trigger another monitoring fuicti

From the programmers’ point of view, the execution of a mon-
itoring function follows sequential semantics, just likevary
lightweight exception handler (Section 4 describes why itooimg

in iWatcher is very lightweight). The semantic order is: thg-
gering access, the monitoring function, and the rest of thgnam
after the triggering access.

Upon successful completion of a monitoring function, the-pr
gram continues normally. If the monitoring function faileturns
FALSE), different actions are taken depending on&eect M ode
parameter specified in iWatcherOn(). iWatcher supportsethr
modes:Report Mode, BreakM ode and Rollback M ode:

e ReportMode: The monitoring function reports the outcome
of the check and lets the program continue. This mode can be
used for profiling and error reporting without interferinghwv
the execution of the program.

e BreakMode: The program pauses at the state right after the
triggering access and control is passed to an exception han-
dler. Users can potentially attach an interactive debygger
which can be used to find more information.

e RollbackMode: The program rolls back to the most re-
cent checkpoint, typically much before the triggering asce
This mode can be used to support deterministic replay of a
code section to analyze an occurring bug [32], or to support

transaction-based programming [29].

A program can associate multiple monitoring functions wlité
same location. In this case, upon an access to the watchetibioc
all monitoring functions are executed following sequdrg@man-
tics according to their setup order.

When a program is no longer interested in monitoring a memory
region, it turns off the monitoring using
i Wat cher OF f (MemAddr, Length, WatchFl ag, Monitor Func)
/* MemAddr: starting address of the watched region*/
/* Length: length of the watched region */

/* WatchFl ag: types of accesses to be unnonitored */
/* MonitorFunc: the monitoring function */

After this operation, theV onitor Func associated with this
memory region of Length bytes starting atMemAddr and



WatchFlag is deleted from the system. Other monitoring func- Extra HW for
tions associated with this region are still in effect. CPU iWatcher

Besides using the iWatcherOff() call to turn off monitoring I L' Orignal HW
for a specified memory region, the program can also use aMain,ch;ec.ktJunction
MonitorFlag global switch that enables or disables monitoring eaisier

. . . . . Range Watch Table (RWT)
on all Watphed locations. This swnch is _use_ful when mom11_1g>_r Star, [ End | WaichFiag | Vaiid
overhead is a concern. When the switch is disabled, no mtati
watched and the overhead imposed is negligible.

Note that iWatcher only provides a very flexible mechanism fo

L1 cache

dynamic execution monitoring. It is not iWatcher’s respbitisy WatchFlag: 2 bits/word II

to ensure that a monitoring function is written correctlystj like Victim WatchFlag
anassert(conditionall cannot guarantee that the condition in the Table (VWT)
code makes sense. Programmers can use invariant-infeoots Addr | WatchFlag
such as DIDUCE [13] and DAIKON [9] to automatically insert L2 cache /1\::>

iWatcherOn() and iWatcherOff() calls into programs.

With this support, we can rewrite the example of Section hgisi
iWatcherOn()/iWatcherOff() operations. There is no neethsert Figure 1. iWatcher hardware architecture.
the invariant check. iWatcherOn() is inserted at the veitog@ng
of the program so that the system can continuously chéckalue  yords pbelonging to small monitored memory regions. Theee ar
whenever and however the memory location is accessed. Byis Wyyo WatchFlag bits per word in the line: a read-monitoring on

the bug is caught at line A. and a write-monitoring one. If the read (write)-monitoribiy is
int x, *p; _ _ set for a word, all loads (stores) to this word automaticédig-
[* assume invariant: x = 1%/ ger the corresponding monitoring function. The processsn a

i WAt cher On( &x, si zeof (int), READWRI TE,

X has a Maincheckfunction register that holds the address of the
Br eakMbde, &MonitorX, &x, 1);

Main_checkfunction() which is the common entry point to all

'p"z foo(): /* a bug: p points to x incorrectly */ program-specified monitoring functions. In addition, iz also
*Pp =5

p = /* line A a triggering access */ has aVictim WatchFlag Table (VWThich stores the WatchFlags
o for watched lines of small regions that have at some point biée
z = Array[x]; /* line B: a triggering access */ placed from L2.

To detect accesses to large (multiple pages) monitored myemo
regions, iWatcher uses a set of registers organized in th€ Rath
RWT entry stores the virtual start and end addresses of a farg

i WAt cher OF f (&x, sizeof (int), READWRI TE, &MNonitorX);

bool MonitorX(int *x, int value){

return (*x == val ue): gion being monitored, plus two bits of WatchFlags and onélval

} bit. We will see that the RWT is used to prevent large monidore
regions overflowing the L2 cache and the VWT. The WatchFlags
4. Architectural Design of iWatcher of these lines do not need to be set in the L1 or L2 cache unless

the lines are also included in a small monitored regions. WMthe
To implement the functionality described above, there dre &®RWT is full, additional large monitored regions are treategsisame
least four challenges: (1) How to monitor a location? (2) How \vay as small regions.
detect a triggering access? (3) How to trigger a monitorumges To reduce monitoring overhead, iWatcher can use TLS to specu
tion? (4) How to support the three reaction modes? In thiS®ec |atively execute the main program in parallel with monibgrfunc-
we first give an overview of the implementation and then show h tjons. Moreover, iWatcher can also leverage TLS to roll benek
it addresses these challenges. buggy code with low overhead, for subsequent replay.

While TLS was also used by Oplinger and Lam to hide over-
heads [29], iWatcher uses a different TLS spawning mechanis
iWatcher is implemented using a combination of hardware an8pecifically, iWatcher uses dynamic hardware spawningghvie-

software. Logically, it has four main parts. First, to deteig-  quires no code instrumentation. Oplinger and Lam, insteesrt
gering accesses on small monitored memory regions, we tdgeca thread-spawning instructions in the program staticaltygéneral,
lines in both L1 and L2 caches with WatchFlags; to detecygtg their approach is less efficient and hurts some conventicoral
ing accesses on large monitored memory regions, we use & snyaler optimizations. Many of the new issues that appear with
Range Watch Table (RWT3econd, the hardware triggers monitor-namic hardware spawning are discussed in Sections 4.3 4nd 4.
ing functions on the fly and provides a spedidin_checkfunction The software component of iWatcher includes the
register to store the common entry point for all monitoringd-  iWatcherOn/Off() system calls, which set or remove associa
tions. Third, we leverage TLS to reduce overheads and sugigor tions of memory locations with monitoring functions. iWaér
three reaction modes. Finally, we use software to managasse uses a software table callécheck Tableto store detailed mon-
ciations between watched locations and monitoring funetio itoring information for each watched memory location. The
Figure 1 gives an overview of the iWatcher hardware. Each Linformation stored includes MemAddr, Length, WatchFlag,
and L2 cache line is augmented with WatchFlags. They identifReactMode, MonitorFunc, and Parameters. Using software

4.1. Overview of the Implementation



simplifies the hardware and enables the system to use sicptést iWatcherOn()/iWatcherOff() software handlers, as they am

data structures. An iWatcherOn/Off() call adds or removes t remove entries to or from the check table, are responsihle fo

corresponding entry to or from the check table. ensuring the consistency between RWT entries and L2/VWT
The iWatcher software also implements theWatchFlags.

Main_checkfunction() library call, whose starting address is . . .

stored in the Maircheckfunction register. When a triggering 4-3- Detecting Triggering Accesses

access occurs, the hardware sets the program counter tddtesa iWatcher needs to identify those loads and stores that ghoul
in this register. The Maircheckfunction() is responsible to call trigger monitoring functions. A load or store is a trigggymccess if
the program-specified monitoring function(s) associatétth the  the accessed location is inside any large monitored regemsded
accessed location. To do this, it needs to search the chieleketad i, the RWT, or the WatchFlags of the accessed line in L1/LZate
find the corresponding function(s). In practice, the process of detecting a triggering accessris
. plicated by the fact that modern out-of-order processarsduce
4.2. \Watching a Range of Addresses access reordering and pipelining. To help in this proc&¥atéher
When a program calls iWatcherOn() for a memory region equaugments each reorder buffer (ROB) entry witfiragger bit, and
or larger tharLargeRegioniWatcher tries to allocate an RWT en- each load-store queue entry with 2 bits that store WatchRfag-
try for this region. If there is already an entry for this mgiin  mation.
the RWT, iWatcherOn() sets the entry’s WatchFlags to théckdg To keep the hardware reasonably simple, the execution ofia mo
OR of its old value and the WatchFlag argument of the call. Ifitoring function should only occur when a triggering loadstore
instead, the region to be monitored is smaller thangeRegion reaches the head of the ROB. At that point, the values of itig-ar
iWatcher loads the watched memory lines into the L2 cacttedlf  tectural registers that need to be passed to the monitauimgiibn
are not already in L2). We do not explicitly load the lineswitl  are readily available. In addition, the memory system issisiant,
to avoid unnecessarily polluting L1. As a line is loaded frovrem-  as it contains the effect of all preceding stores. Moreotresre
ory, iWatcher accesses the VWT to read-in the old WatchFli&gs is no danger of mispredicted branches or exceptions, whickdc
they exist there. Then, it sets the WatchFlag bits in the h& to  require the cancellation of an early-triggered monitofingction.
be the logical OR of the WatchFlag argument of the call anattie For a load or store, when the TLB is looked up early in the
WatchFlags. If the line is already present in L2 and possildly pipeline, the hardware also checks the RWT for a match. This i
iWatcher simply sets the WatchFlag bits in the line to thedaly troduces negligible visible delay. If there is a match, theeas is
OR of the WatchFlag argument and the current WatchFlag. | In & triggering one. If there is no match, the WatchFlags in Huhes
cases, iWatcherOn() also adds the monitoring functionéatieck  will be examined to determine if it is a triggering access.
table. A load typically accesses the memory system before reaching
When a program calls iWatcherOff(), iWatcher removes thre cothe head of the ROB. It is at that time that a triggering loatl wi
responding monitoring function entry from the check tabflare-  detect the set WatchFlags in the cache. Consequently, idesur
over, if the monitored region is large and there is a corredpy  sign, as a load reads the data from the cache into the loacegueu
RWT entry, iWatcherOff() updates this RWT entry’s Watclgda it also reads the WatchFlag bits into the special storageigied in
The new value of the WatchFlags is computed from the remgininthe load queue entry. In addition, if the RWT or the WatchHiag
monitoring functions associated with this memory regiataad-  indicate that the load is a triggering one, the Trigger bsoasted
ing to the information in the check table. If there is no remiay  with the load’s ROB entry is set. When the load (or any ingtoun)
monitoring function for this range, the RWT entry is invaltdd. finally reaches the head of the ROB and is about to retire, dind-h
If, instead, the memory region is small, iWatcher finds &l lines  ware checks the Trigger bit. If it is set, the hardware triggbe
of the region that are currently cached and updates theich¥at corresponding monitoring function.

Flags based on the remaining monitoring functions. iWateleo Stores present a special difficulty. A store is not sent tartem-
updates (and, if appropriately removes) any correspondW  ory system until it reaches the head of the ROB. At that pdiiig,
entries. retired immediately, but it may still cause a cache miss, lrictv

Caches and VWT are addressed by the physical addressescage it may take a long time to actually complete. In iWatctings
watched memory regions. If there is no paging by the OS, th® mawould mean that, for stores that do not hit in the RWT, the psec
ping between physical and virtual addresses is fixed for thelev  sor may have to wait a long time to know whether it is a trigggri
program execution. In our prototype implementation, weuass access, especially for stores that do not hit in the RWT. mtfhat
that watched memory locations are pinned by the OS, so tlkat tlime, no subsequent instruction could be retired, as thegssor
page mappings of a watched region do not change until the-momhay have to trigger a monitoring function. To reduce thisylels
toring for this region is disabled using iWatcherOff(). much as possible, we change the micro-architecture scahagon

Note that the purpose of using RWT for large regions is tocedu as a store address is resolved early in the ROB, a prefetshtisd
L2 pollution and VWT space consumption: lines from this cegi  to the memory system. Such prefetch brings the data intcettles;
will only be cached when referenced (not during iWatche)Pn( and the WatchFlag bits are read into the special storageisttite
and, since they will never set their WatchFlags in the catiey queue entry. If the RWT or the WatchFlag bits indicate that th
will not use space in the VWT on cache eviction. store is a triggering one, the Trigger bit in the ROB entrylsa

It is possible that iWatcherOn()/iWatcherOff() accessset. With this support, the processor is much less likelyaeetto
some memory locations sometimes as part of a large revait when the store reaches the head of the ROB. While isshisg
gion and sometimes as a small region. In this case, thmefetch may have implications for the memory consistenogdeh



supported in a multiprocessor environment, we considetdpie
to be beyond the scope of this paper.

Note that bringing the WatchFlag information into the Icaidre
gueue entries enables correct operation for loads thahgitdata
directly from the load-store queue. For example, if a staréhie
load-store queue has the read-monitoring WatchFlag hitrsen a
load that reads from it will correctly set its own Trigger.bit

4.4. Executing Monitoring Functions

When a triggering load or store is retired, its associatedimo

toring function has to be automatically initiated. UsingS'mech-

may have already accessed the data in the cache and, as per TLS
already updated the microthread ID in the cache line to bérzeS

the microthread ID on these cache lines should now be 1, tlte ha
ware re-touches the cache lines that were read by thesditedre
loads, correctly setting their microthread IDs to 1. Theraa such
problem for stores because they only update the microthEzsah

the cache at retirement.

It is possible that a speculative microthread issues adrigg
access, as shown on Figure 2(b). In this case, a more sgpeeulat
microthread (microthread 2) is spawned to execute the fetbieo
program, while the speculative microthread (microthrepdriters

anisms, the iWatcher hardware automatically spawns a new mhe Maincheckfunction. Since microthread 2 is semantically after

crothread (denoted as microthread 1 in Figure 2(a)) to $ataely
execute the rest of the program after the triggering acaekie
the current microthread (denoted as microthread 0 in Fig(ag
executes the monitoring function non-speculatively. Tavjate se-
guential semantics (the remainder of the program is senwiyti
after the monitoring function), data dependencies arekéhdy
TLS and any violation of sequential semantics results irstheash
of the speculative microthread (microthread 1).
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(a) Executing a monitoring function. (b) Triggering a monitoring
function from a speculative
microthread.

Figure 2. Examples of monitoring function execution.

Microthread 0 executes the monitoring function by starfiogn
the address stored in the Maiheckfunction register. It is the re-
sponsibility of the Maincheckfunction() to find the monitoring
functions associated with the triggering access and chiualh
functions one after another. Note that, although semadlytica
monitoring function appears to programmers like a usecifipd
exception handler, the overhead of triggering a monitofinge-
tion is tiny with our hardware support. Indeed, while triggg
an exception handler typically needs OS involvement, &igg a
monitoring function in iWatcher is done completely in haete:
the hardware automatically fetches the first instructiamfrthe

Main_checkfunction(). iWatcher can skip the OS because moni-

toring functions are not related to any resource manageinghe
system and, in addition, do not need to be executed in pgisde

mode. Moreover, the Maigheckfunction() and the check table

are in the same address space as the monitored programforbere

a “bad” program cannot use iWatcher to mess up other programs
Microthread 1 speculatively executes the continuationhef t

monitoring function, i.e., the remainder of the prograneathe
triggering access. To avoid the overhead of flushing thelipipe
iWatcher dynamically changes the microthread ID of all tistruc-
tions currently in the pipeline from 0 to 1. Unfortunatetyisipossi-
ble that some un-retired load instructions after the thigngeaccess

microthread 1, a violation of sequential semantics willfem the
squash of microthread 2. In addition, if microthread 1 isasined,
microthread 2 is squashed as well. Finally, if microthreazbin-
pletes while speculative, iWatcher does not commit it; it oaly
commit after microthread 1 becomes safe.

Note that, in a CMP-based iWatcher, microthreads should be
allocated for cache affinity. In our Figure 2(a) example,csie
tive microthread 1 should be kept on the same CPU as the afigin
program, while microthread 0 should be moved to a differéntyC
This is because microthread 1 continues to execute thegrognd
is likely to reuse cache state.

4.5. Different Reaction Modes

If a monitoring function fails, iWatcher takes differenttians
depending on the function’s ReactMode. Figure 3 illusgate
three supported reaction moddgportMode is the simplest one.
iWatcher treats it the same way as if the monitoring functiad
succeeded: microthread O commits and microthread 1 becomes
safe. If the reaction mode Break M ode, iWatcher commits mi-
crothread 0 but squashes microthread 1. The program stdte an
the program counter (PC) of microthread 1 are restored tettite
it had immediately after the triggering access (Figure 3()he
cache updates of microthread 1 are discarded. At this ppint,
grammers can use an interactive debugger to analyze the bug.
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Figure 3. Different reaction modes supported by iWatcher.

If the reaction mode iollback M ode, iWatcher squashes mi-
crothread 1 and also rolls back microthread 0 to the mosintece
checkpoint (the checkpoint at PC in Figure 3(c)). iWatcleer ase
support similar to ReEnact [32] to provide this reaction eod

4.6. Other Issues

Displacements and Cache Misses.When a watched line of small
regions is about to be displaced from the L2 cache, its WaacisF
are saved in the VWT. The VWT is a small set-associative buffe



[ Feature [ Assertions | Hardware Watchpoints [ DIDUCE | iWatcher |
Hardware Support? None Simple support TLS support TLS and memory watch support
Type of checks Code-controlled Location-controlled Code-controlled Location-controlled
Reaction modes Abort Interrupt Break or transaction abort Report, break or rollback
Programmer’s effort | High High Low Moderate or fow with automatic

instrumentation

Language dependentP No No Yes (Java) No
Flexibility Very flexible, program| Inflexible, only supports a few| Moderately flexible, currently only| Very flexible, program specific

specific watchpoints, relies on programmeiis supports simple invariance checks

or debuggers for checks

Cross-module  and| No Yes No Yes
cross-developer
Completeness Hard to make sure allpos{ Detects all accesses May miss some accesses due foDetects all accesses

sible places are checked aliasing problems

Table 1. Comparison of iWatcher to three other approaches. Completeness refers to whether an approach monitors all accesses to a
watched memory location by construction.

If the VWT needs to take an entry while full, it selects a vitti to execute monitoring functions in parallel with the restta# pro-
entry to be evicted, and delivers an exception. The OS thres tn  gram, effectively hiding most of the monitoring overhead.

page protections for the pages that correspond to the WaighF iWatcher is flexible and extensible. Programmers or autimmat
to be evicted from the VWT. Future accesses to these pages wilstrumentation tools can add monitoring functions. iWatcis
trigger page protection faults, which will enable the OSrisert  convenient even for manual instrumentation because progeas
their WatchFlags back into the VWT. However, in our expenitsg  do not need to instrument every possible access to a watched m
we find that a 1024-entry VWT is never full. The reason is thatt ory location. Instead, they only need to insert an iWatcingy@r
VWT only keeps the WatchFlags for watched lines of smalloegi  a location when they are interested in monitoring this limraand
that have at some point been displaced from L2. an iWatcherOff() when the monitoring is no longer neededbédn

On an L2 cache miss, as the line is read from memory, the VWilween, all possible accesses to this location are autoafigtinon-
is checked for a address match. If there is a match, the WaighF itored. In addition, iwatcher supports three reaction nsodeving
for the line are copied to the destination location in theneadNVe  flexibility to the system.
do not remove the WatchFlags from the VWT because the memory jwatcher is cross-module and cross-developer. A watched lo
access may be speculative and be eventually undone. If iherecation inserted by one module or one developer is autontigtica
no match, the WatchFlags for the loaded line are set to theuttef honored by all modules and all developers whenever the wtch
“un-watched” value. Note that this VWT lookup is performed i |ocation is accessed.
parallel with the memory read and, therefore, introducegigiéle iWatcher is language independent since it is supportedttjre
visible delay. in hardware. Programs written in any language, including-6/,

Aside from these iSSUeS, caches work as in conventional TLﬁva or other |anguages can use iWatcher. For the same reason
systems. In particular, speculative lines cannot be diggldrom  jwatcher can also support dynamic monitoring of low-leyaitem
the L2. If space is needed in a cache set that only holds spte@il  software, including the operating system.
lines, a speculative microthread is squashed to make rooote M j\watcher can be used to detect illegal accesses to a memory lo
details can be found in [32]. cation. For example, it can be used for security checks teepite
Check Table |mp|ementati0n. The check table is a software ta- |||ega| accesses to some secured memory locations. In @arex
ble. Our current implementation uses one entry for eachheatc jments, we have used iWatcher to protect the return addreas i
region. The entries are sorted by start address. To speetlag  program stack to detect stack-smashing attacks [6, 11,738, 4
table lookup, we exploit memory access locality to redueerntim- Table 1 summarizes the differences between iWatcher and the
ber of accessed table entries during one search. A table @mF  three related approaches discussed in Section 2. In the, tabl
tains all arguments of the iWatcherOn() call. If there aretiple  geject DIDUCE [13] as a state-of-the-art representativéyomic
monitoring functions associated with the same locatiorytAre  checkers. DIDUCE is a tool for debugging Java programs. rit ca
linked together. Since the check table is a pure softwamestaic-  gynamically infer some simple program invariants and therae-
ture, it is easy to change its implementation. For examplett@r a1y perform invariant checks to detect bugs. Like othgnamic
implementation could be to organize it as a hash table. ItheaN checkers, DIDUCE requires instrumentation. The instruatéon
hashed with the virtual address of the watched location. overhead slows down execution by 6-20 times. To reduce tae ov
5. Advantages of iWatcher hea}d, the authors use TLS to execute the checks in parattethe

main program [29].

Based on the previous discussion, we can list the advantdges From the table, we see that iWatcher differs from DIDUCE in
iWatcher. One of them is that it provides location-congdlmon-  several major ways. Most importantly, while DIDUCE perfarm
itoring. Thereforeall accesses to a watched memory location areode-controlled monitoring, iWatcher performs locatmomtrolled
monitored, including “disguised” accesses due to dangiimigters monitoring, therefore enjoying the benefits described tiSe 2.1.
or wrong pointer manipulations. In particular, if we applied the DIDUCE mechanism to C/C++

Another advantage of iWatcher is its low overhead. iWatchetodes, due to aliasing problems, we would need to inserhfiatly
only monitors memory operations that truly access a watatem-  many more checks than necessary, as we lack accurate infonma
ory location. Moreover, iWatcher uses hardware to triggenitor-  at instrumentation time. In addition, we may miss some a&&®s
ing functions with minimal overhead. Finally, iWatcher asSELS that need to be instrumented.



Another difference between iWatcher and DIDUCE is that the In our experiments, we run Valgrind on a real machine witt6a 2.
former is language independent and can work for any program&Hz Pentium 4 processor, 32-Kbyte L1 cache, 2-Mbyte L2 cache
even operating systems. DIDUCE, instead, currently wordg o and 1-Gbyte main memory. Since iWatcher runs on a simulator,
for Java programs, and some of its techniques are not apfgica cannot compare the absolute execution time of iWatcher thih
to C/C++ programs. Finally, iWatcher is cross-module arabsr  of Valgrind. Instead, we compare their relative executieerbeads
developer. over runs without monitoring.

We note that iWatcher is complementary to DIDUCE. DIDUCE L
could provide iWatcher with automatic invariant inferescahile  06-3-  Tested Applications

iWatcher could provide DIDUCE with an efficient locationseal We have conducted two sets of experiments. The first one uses
monitoring capability. applications with bugs to evaluate the functionality andrbeads

. of iWatcher for software debugging. The second one systeatigt
6. Evaluation Methodology evaluates the overheads of iWatcher to monitor applicatigthout

6.1. Simulated Architecture bugs.
The applications used in our first set of experiments conain

To evaluate iWatcher, we have built an execution-driverrsimOus bugs, including memory leaks, memory corruption, buffer-
ulator that models a workstation with a 4-context SMT preces i,y stack-smashing attacks, value invariant violationd aut-

augmented with TLS support and iWatcher functionality. Pae  )5nqd pointers. These applications are: bc-1.03 (an arpipre-
rameters of the architecture are shown in Table 2. As sedmein teision calculator language), cachelib (a cache managelibeaty

table, each microthread is aIIc_)cated 32 _Ioa_d-store q_uetluie&nWe developed at UIUC), and gzip (a SPECINT 2000 application run
model the overhead of spawning a monitoring-function nttaread ning the Test input data set). Of these codes, bc-1.03 arfbliac

as 5 cycles of processor stall visible to the main-prograredth.  \ready had bugs, while we injected some common bugs info gzi
The reaction mode used in all experiments is ReportModeh&d t  14pje 3 shows the details of the bugs and monitoring funstion

all programs can run to completion. For gzip, we evaluate the case of single bugs: stack-smgshin

CPUfrequency 5 4GHz | ROBSize 350 memory corruption, buffer overflow (dynamic buffer overflend

Fetch width 16 I-window size 160 static array overflow), memory leak, or value invariant atan.

EZ;{?J&?&& 182 :\r/}}a'r:nUFSUs 2 We also evaluate the case of a combination of bugs (memaky lea

écri)/;sv ﬂu(?vl.g ﬁggges 3525352? EZ ;:ldcs)n e Repo‘r‘tMode T]emory corruption, an(:] (;ynamic bllj.ﬁer. overflow). Table 3vgfo

L ! the names given to each buggy application.

7 cache ffnlé?é?wg?é%%m?ig Eii'éi 'éiﬂii For fair comparison between Valgrind and iWatcher, in Viaidr

\L/deRegion 1024 emgi?('ti;t";";‘y' 2B/entry we enable only the type of checks that are necessary to dagect

RWT 4 entries, 32bits for the start and end address bug(s) in the corresponding application. For example, fip-g/L,

Memory 200 cycles latency we enable only the memory leak checks. Similarly, for gzig-M
Table 2. Parameters of the simulated architecture. Latencies are and gzip-BO1, we enable only the invalid memory access check
given as unloaded round-trips from the processor. In all our experiments, variable uninitialization checke always

disabled.

tecture without TLS support. On a triggering access, thegBsor  pnamic buffer overflow, memory leak, or static array overflowy
first executes the monitoring function, and then proceedseoute  j\\atcher monitoring functions are very general. They numétl
the rest of the program. Finally, we simulate the same achite  possible relevant locations without using program-spesémantic
with no iWatcher or TLS support. For the evaluation withoUST  jnformation. In addition, all iWatcherOn/Off() calls cae nserted
support, the single microthread running is given a 64-eltagl- [y an automated tool without any semantic program inforomati
store queue. We enforce these rules to have a fair comparison with Vadgrin
. which does not have any semantic program information. Fhere

6.2. Valgrind fore, we feel that the comparison is fair.

In our evaluation, we compare the functionality and ovedhea To detect other bugs, such as value invariant violationsoarnd
of iWatcher to Valgrind [36], an open-source memory debudge bound pointers, we need program-specific information. Nadh
x86 programs. Valgrind is a binary-code dynamic checkeetect cannot detect these bugs, whereas iWatcher can.
general memory-related bugs such as memory leaks, mempory co For gzip with memory leak, iWatcher not only detects all dy-
ruption and buffer overflow. It simulates every single instion of namic memory buffers that are not freed,; it also ranks bsfased
a program. Because of this, it finds errors not only in a pnogsat  on their access recency. Buffers that have not been accéssed
also in all supporting dynamically-linked libraries. Valyl takes a long time are more likely to be memory leaks than the regentl
control of a program before it starts. The program is thenamn accessed ones.
a synthetic x86 CPU, and its every memory access is checkéd. A Finally, our second set of experiments evaluates iWatcher
detected errors are reported. overheads by monitoring memory accesses in two unmodified

Valgrind provides an option to enable or disable memory leaBPECINT 2000 applications running the Test input data sehaly
detection. We also enhanced Valgrind to enable or disabiabla  gzip and parser. We measure the overhead as we vary the percen
uninitialization checks and invalid memory access checkedks age ofdynamicloads monitored by iWatcher and the length of the
for buffer overflow and invalid accesses to freed memorytiooa).  monitoring function.



Application Bug Class Type of Bug Description Monitoring Function
Monitoring
gzip-STACK stack general In function “huftfree()”, the return address When entering a function, call iWatcherOn() on the locatifding
smashing in the program stack is corrupted. the return address. Turn off monitoring immediately befinefunc-
tion returns.
gzip-MC memory general In function “huftfree()”, dereference a Monitor all freed locations. Any access to such locatiorsheig. Af-
corruption pointer after it is freed up. ter a free buffer is re-allocated, the monitoring for thefeuis turned
off.
gzip-BO1 dynamic general In function “huftbuild()”, access an ele{ Add some padding to all buffers. The padded locations aretored
buffer ment past the boundary of the dynamically- by iWatcher. Any access to them is a bug.
overflow allocated buffer.
gzip-ML memory leak general In function “huftfree()”, only free the first| Monitor all accesses to heap objects. Each access to a h¢agi d
node of the linked list but not other nodes.| updates its time-stamp. Objects that have not been acciessebbng
time are likely to be memory leaks.
gzip-COMBO combination general Combination of the bugs in gzip-ML, gzip{ Combines the monitoring in gzip-ML, gzip-MC, and gzip-BO1.
of bugs MC, and gzip-BO1.
gzip-BO2 static array general In function "huftbuild()”, write outside of a | Similar to gzip-BO1.
overflow static array.
gzip-IV1 value invariant program In function “huftbuild()”, variable "hufts™ | Any write to this Tocation triggers an invariant check.
violation specific is corrupted due to memory corruption.
gzip-1V2 value invariant program In function “inflate()”, an unusual value iy Similar to gzip-IV1.
violation specific stored into the variable “hufts”.
cachelib-IV value invariant program In option.c:ine 90, initialize variable| Similar to gzip-IV1.
violation specific “conf—algos” to 0.
bc-1.03 outbound program In dc-eval.c:line 498-503, pointer “s”is out} Use a “rangecheck()” function to check the value of “s™ each time "y
pointer specific side of the array in some cases. is written.

Table 3. Bugs and monitoring functions. Type of monitoring indicates whether the monitoring function uses program-specific semantic
information or, instead, monitors all possible relevant locations without using program-specific semantic information. We call the second
approach “general” monitoring.

7. Experimental Results

7.1. Overall

table shows whether the schemes detect the bug and, if sovéhe

Results

n

cessed, and of using TLS to hide monitoring overheads. Tifer-di
ence in overhead between Valgrind and iWatcher is largeriip-g
MC, where we are looking for a pointer that de-referencesadr

Table 4 compares the effectiveness and the overhead ofinigr UP location. - In this case, iWatcher only monitors freed mamo
and iWatcher. For each of the buggy applications consigered Puffers, and any triggering access uncovers the bug. Asultres

iWatcher’s overhead is 169 times smaller than Valgrindinialy,

head they add to the program’s execution time. Recall from SeCur results with Valgrind are consistent with the numbeis-%2

tion 6 that Valgrind's times are measured on a real machimiew times slowdown) reported in a previous study [37].
If we consider all the applications, we see that iWatcher&ro

iWatcher’s are simulated.

head ranges from 4% to 80%. This overhead comes from three

Application Valgrind iWatcher
Bug Overhead Bug Overhead

Detected? (%) Detected? (%)
gzip-STACK No - Yes 80.0
gzip-MC Yes 1466 Yes 8.7
gzip-BO1 Yes 1514 Yes 10.4
gzip-ML Yes 936 Yes 37.1
gzip-COMBO Yes 1650 Yes 42.7
gzip-BO2 No - Yes 10.5
gzip-IV1 No - Yes 10.5
gzip-1vV2 No - Yes 9.6
cachelib-IV No - Yes 3.8
bc-1.03 No - Yes 23.2

Table 4. Comparing the effectiveness and overhead of Valgrind

and iWatcher.

ruption, dynamic buffer overflow, memory leak bugs, and thie€
bination of them. iWatcher, instead, detects all the bugsictered.
iWatcher’s effectiveness is largely due to its flexibilitydpecialize

the monitoring function.

than Valgrind. For example, in gzip-COMBO, where both iVWetic
and Valgrind monitor every access to dynamically-allodateem-
ory, iWatcher only adds 43% overhead, which is 39 times leas t
Valgrind. iWatcher’s low overhead is the result of triggerimon-
itoring functions only when the watched locations are dbtuc-

effects. The first one is the contention of monitoring-fumctmi-
crothreads and the main program for processor resourcels ésu
functional units or fetch bandwidth) and cache space. Socdh c
tention has a high impact when there are more microthreagls ex
cuting concurrently than hardware contexts in the SMT pssae
In this case, the main-program microthread cannot run altithe.
Instead, monitoring-function and main-program microfiieshare
the hardware contexts on a time-sharing basis.
Columns 2 and 3 of Table 5 show the fraction of time that there i
more than one microthread running or more than four miceattis
running, respectively. These figures include the main-@nogmi-

crothread. Note that having more than four microthreads run
ning does not mean that the main-program microthread starve
Consider effectiveness first. Valgrind can detect memory cothe scheduler will attempt to share all the contexts amohmil

crothreads fairly. From the table, we see that three afjpitaiuse
more than 1 microthread for more than 1% of the time. Of those,
there are two that use more than 4 microthreads for a significa

fraction of the time. Specifically, this fraction is 15.2% fgzip-
The table also shows that iWatcher has a much lower overhe@®MBO and 16.9% for gzip-ML. Note that these applicationgha

than Valgrind. For bugs that can be detected by both schemdsgh iWatcher overhead in Table 4. bc-1.03 is a short progeart

iWatcher only adds 9-43% overhead, a factor of 25-169 smalleven a little contention has a significant impact on exeattiioe.

A second source of overhead is the iWatcherOn/Off() calls.
These calls consume processor cycles and, in additiorg brem-
ory linesinto L2, possibly polluting the cache. The overdheaused
by iWatcherOn/Off() can not be hidden by TLS. In practiceith
effect is small due to the small number of calls, except ipgzi



Application % Time % Time # Triggering # iWatcher- Size of Size of Max Monitored | Total Monitored
With > 1 With > 4 Accesses per On/Off() iWatcherOn/Off() Monitoring Memory Size at| Memory Size
Microthread | Microthreads | 1M Instructions Calls Call (Cycles) Function (Cycles) | a Time (Bytes) (Bytes)
gzip-STACK 0.1 0.0 0.2 4889642 20.7 22.4 40 19558568
gzip-MC 0.1 0.0 0.4 239 1291.3 24.4 246880 246880
gzip-BO1 0.1 0.0 0.4 486 210.4 177.0 80 1944
gzip-ML 23.1 16.9 13008.9 243 582.6 47.4 6613600 6847616
gzip-COMBO 26.2 152 13009.6 243 1082.3 45.2 6847616 6847616
gzip-BO2 0.1 0.0 0.2 880 59.0 24.8 32 3520
gzip-IV1 0.1 0.0 0.7 132 40.5 21.7 4 528
gzip-1V2 0.1 0.0 1.1 1 83.0 23.0 4 4
cachelib-1V 0.4 0.0 91.6 10 129.0 16.5 40 40
bc-1.03 2.2 0.0 907.2 1 81.0 134.2 4 4

Table 5. Characterizing iWatcher execution.

STACK. Indeed, Columns 5 and 6 of Table 5 show the absoluteig. This is because our check table lookup algorithm is edfiy
number of iWatcherOn/Off() calls and the average size ofran i cient for the applications evaluated in our experiments.
dividual call. Except for gzip-STACK, the product of numhafr

calls times the size per call is tiny compared to the hundméds 7 2. Benefits of TLS

millions of cycles taken by the application to execute. Fase
cases, it can be shown that, even if every line brought intdoy.2
iWatcherOn/Off() calls causes one additional miss, thealef-
fect on program execution time is very small.

As indicated in Section 6, our experiments are performed us-
ing ReportMode. In this reaction mode, TLS speeds-up execu-
tion by running monitoring-function microthreads in pdehivith

The exception is gzip-STACK, where the number ofeach other and with the main program. To evaluate the effiect o
iWatcherOn/Off() calls is huge (4,889,642). These calls inngot having TLS, we now repeat the experiments executing both
troduce a Iarge overhead that cannot be hidden by TLS. MGTEOVmonitoring_function and main_program code Sequentiéﬂytead
iWatcherOn/Off() calls partially cripple some conven@brtom-  of spawning microthreads to execute them in parallel.
piler optimizations such as register allocation. The ieisulvorse Fi 4 th i heads of iWatch d
code and additional overhead. Overall, while for most ajgpions . \gure 4 compares the execution overheads of Watcher an
the iWatcherOn/Off() calls introduce negligible overhgddr !Wa_tcherwnhoutTLS for aIIthe_appllcatlons. The amountmjn_-
gzip-STACK, they are responsible for most of the 80% ovedtafa itoring overhead that can b? hidden by TLS in a program I the
iWatcher. product of Columns 4 and 7 in Table 5. For programs with substa
tjal monitoring, TLS reduces the overheads. For examplgzip-

OMBO, the overhead of iWatcher without TLS is 61.4%, while

in iwatcher, namely the spawning of monitoring-function-mi ;- only 42.7% with TLS. This is a 30% reduction. As monitor-
crothreads. As indicated in Section 6, each spawn takesl|Bscyc . . -
ing functions perform more sophisticated tasks such as @BY

C(_)I_umr_1 4 of Tgble 5 shows the number of triggering accesses pi%variant inference [13], the benefits of TLS will become mpro-
million instructions. Each of these accesses spawns a thiewed.

From the table, we see that this parameter varies a lot aamss nounced.
plications. However, given the small cost of each spawnjdte

overhead is small. 100

Overall, we conclude that the overhead of iWatcher can ble hig
(37-80%) if the application needs to execute more conctmen
crothreads than contexts provided by the SMT processother t
application calls iWatcherOn/Off() very frequently. Fiwetother
applications analyzed, the overhead is small, ranging #émto
23%.

Finally, the last three columns of Table 5 show other paramset
of iWatcher execution: average monitoring function sizaximum
monitored memory size at a time, and total monitored memiagy s
respectively. We can see that, while most monitoring fumsitake
less than 25 cycles, there are a few applications where orenit Figure 4. Comparing iWatcher and iWatcher without TLS.
ing functions take 45-177 cycles. In some cases such asMjzip-
and gzip-COMBO, these relatively expensive monitoringctions

Finally, there is a third, less important source of overheal

OiWatcher-NoTLS
W iWatcher

80

Execution Overhead (%)

gzip-MC
9zip-BO1
gzip-ML
gzip-BO2
gzip-IV1
gzip-IV2
bc-1.03

x
2
=
@
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S

9zip-COMBO
cachelib-IV

occur in applications with frequent triggering accessesiedthis For programs with little monitoring, the product of Columhs
happens, the fraction of time with more than 4 microthreadhigh, and 7 in Table 5 is small. For these applications, TLS does not
which results in high iWatcher overhead (Table 4). provide benefit, because there is not much overhead thate&an b

The last two columns show that in some applications such é‘gdden by TLS.
gzip-ML and gzip-COMBO, iWatcher needs to monitor many ad- Overall, we recommend supporting TLS, as it reduces the-over
dresses. In this case, the check table will typically contaany head of iWatcher in some applications. We also note that TLS
entries. Note, however, that even in this case, the sizeeofrthn- can be instrumental in efficiently supporting RollbackMd&ec-
itoring function, which includes the check table lookupsi#i not  tion 4.5).



7.3. Sensitivity Study 8. Related Work

To measure the sensitivity of iWatcher’s overhead, we eiaify Our work builds upon many previous proposals to improve soft
vary the fraction of triggering accesses and the size of theitor-  ware robustness. Due to space limitations, we briefly desanly
ing functions. We perform the experiments on the bug-fréeazd  related works that have not been described in previousosecti
parser applications. Many tools have been proposed for dynamic execution mon-
In afirst experiment, we trigger a monitoring function evafth  itoring. Well-known examples include Purify [14], Intelr&ad
dynamicload in the program whereN varies from 2 to 10. The checker [17], Eraser [33], StackGuard [6], DIDUCE [13], Val
function walks an array, reading each value and comparitmat grind [36], CCured [5, 27], and many others [1, 23, 30, 31].sWo
constant for a total of 40 instructions.  The resulting execu of these tools rely on instrumentation to perform dynamieakis.
overhead for iWatcher and iWatcher without TLS is shown ig-Fi Consequently, to check all possible accesses to a givetidaca
ure 5. The figure shows that the overhead of iWatcher withueet) they typically need to instrument more than necessary. More
triggering accesses is tolerable. Specifically, the gzigrloead is over, most dynamic checkers impose significant run-timetmes.
66% for 1 trigger out of 5 dynamic loads, and 180% for 1 triggeifWatcher innovates with efficient and flexible location-totied
out of 2 loads. The parser overheads are a bit higher, narid61 monitoring capability.
for 1 trigger out of 5 loads, and 418% for 1 trigger out of 2 Isad Schnarr and Larus have proposed using unused processes cycl
If iwatcher does not support TLS, however, the overheadspgo uto reduce overhead faode-controlledmonitoring [34]. Our work
273% for gzip and 593% for parser, respectively, for 1 trigget  differs from theirs in that iWatcher provides convenierexible ar-

of 2 loads. chitectural support to perfortocation-controlledmonitoring, and
. . uses TLS to hide monitoring overheads.
o Watsher-NoTLS O Watsher-NoTLS Austin et al. [1] have proposed detecting errors in pointer or

.~ g array accesses by validating dereferences against theepsiat-
3 o0 3 tributes, such as bounds. This method can prevent a poioiteingy
§ 300 £ 200 to an array fromincorrectly moving out of bounds, but carteiect
£ 200 § w0 errors for general pointers such as links between strustiMere-
§ - g0 over, it performs checks sequentially and therefore canladg

execution overheads (130-540%). iWatcher can be used tweed
T e s e w these overheads. Moreover, iWatcher extends dynamic ororgt
Fraction of Triggering Load Instructions Fraction of Triggering Load Instructions from out-of-bound checks for array accesses to locatiortrotied

gzip parser checks for any general memory accesses.
Figure 5. Varying the fraction of triggering loads. To improve software debugging, several hardware suppavs h

been proposed beyond hardware-assisted watchpoints 1381

In a second experiment, we vary the size of the monitoringfun 39], including the proposal of Oplinger and Lam [29], ReEn-
tion. We use the same function as before, except that we hary tact [32], and the Flight Data Recorder [48]. Oplinger and Lam
number of instructions executed from 4 to 800. The functiamig- use TLS to execute invariant checks to detect bugs in paveitie
gered in 1 out of 10 dynamic loads. The resulting executicer-ov the main program. ReEnact uses the state buffering, ra{)tzad
head is shown in Figure 6. The figure again shows that the Wg¢atc re-execute features of TLS to debug data races. The Fligtst Da
overheads are modest. For 200-instruction monitoringtfans, Recorder logs coherence operations into a file that can pallgn
the overhead is 65% for gzip and 159% for parser. In iWatchdse used to support replay for debugging. Our work is differen
without TLS, the overhead is 173% for gzip and 335% for parsesince iWatcher’s contribution is to provide efficient andckitde ar-
As we increase the monitoring function size, the absoluteefies  chitectural support to monitor memory locations.
of TLS increase, as TLS can hide more monitoring overhead. Our work is related to previous work on fine-grain access
control [35, 46]. For example, Mondrian Memory Protection
(MMP) [46] provides access control at word granularity gsm
o o “protection look-aside buffer” (PLB) to record protectidmfor-
5 s mation. MMP can potentially be used to implement location-
controlled monitoring. However, like hardware-assisteatoh-
points, it needs to raise an exception and, therefore carsigdd
nificant overhead.

Our work is also related to some of the classic work on

700 700

400 400

Execution Overhead (%)
Execution Overhead (%)

. w0 w0 o s0 s w00 w0 80 capability-based architectures [10, 21], protectionsgmed ar-
Monitoring Function Size (Instructions) Monitoring Function Size (Instructions) chitectures [19], hardware SUppOl’t for Security [11, 22, 43],

gzip parser TLS [4, 38, 41, 44], and hardware support for instructiovelgro-
Figure 6. Varying the size of the monitoring function. filing [7].

9. Conclusions and Future Work

1For parser, we skip the program’s initialization phase chttiasts about ) ) .
280 million instructions, because its behavior is not repreative of steady This paper has presentédatcher novel architectural support

state. for minimal-overhead location-controlled monitoring. at¢her de-



tects all accesses to a watched memory location, inclutioggtby
astray pointer dereferences. To reduce overhead and supflor
back, iWatcher leverages Thread-Level Speculation (TW&)have
evaluated iWatcher on applications with various bugs. divat de-
tects all bugs evaluated in our experiments with only a 4-&3%6
ecution overhead. In contrast, a well-known open-sourcedas
tector called Valgrind induces orders of magnitude moretwad,
and can only detect a subset of the bugs. Moreover, even ®4th 2
of the dynamic loads monitored in a program, iWatcher onlgsad [15]
66-174% overhead. [16]
Even though our experiments have only demonstrated thefuse; gy,
iWatcher in detecting several types of bugs, iWatcher caa be
used to detect many other types of bugs such as uninitialezsts
and data races. In addition, iWatcher also provides a fraew
for general-purpose debugging. Using performance debggas
one example, iWatcher can be used for value and addressmgofil [21]
which can then guide data placement or instruction reangeto
reduce cache misses. Another example is the use of iWateher[23]
BreakMode, which allows it to interface to interactive dgbers
and efficiently support watchpoints and conditional brexk{s. [24]
We are in the process of extending this work in several Way$ys)
First, we plan to compare iWatcher to other dynamic chechkers
yond Valgrind. Moreover, we will evaluate iWatcher for miult [26]
threaded programs, which often exhibit hard-to-debug sugh
as data races and deadlocks. In addition, we plan to test apore [27]
plications, especially large server programs with realbligorder [2g]
to do this, we are in the process of upgrading our simulatifnas-
tructure. We are also seeking help from the OS to handle thé'VV\Pg]
overflow issue. Finally, note that, in this study, we haveeitesd [30]
all iwatcherOn/Off() calls manually. It is more conveni¢atuse |39
a compiler or an instrumentation tool to insert them. It soah-
teresting to combine iWatcher with an invariant-inferetozd such (2]
as DIDUCE [13], which can specify watched locations andrthei[33]
associated monitoring functions. We are addressing tissses.
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