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ABSTRACT

As software evolves, problematic changes can significantly degrade
software performance, i.e., introducing performance regression. Per-
formance regression testing is an effective way to reveal such issues
in early stages. Yet because of its high overhead, this activity is usu-
ally performed infrequently. Consequently, when performance re-
gression issue is spotted at a certain point, multiple commits might
have been merged since last testing. Developers have to spend extra
time and efforts narrowing down which commit caused the prob-
lem. Existing efforts try to improve performance regression testing
efficiency through test case reduction or prioritization.

In this paper, we propose a new lightweight and white-box ap-
proach, performance risk analysis (PRA), to improve performance
regression testing efficiency via testing target prioritization. The
analysis statically evaluates a given source code commit’s risk in
introducing performance regression. Performance regression test-
ing can leverage the analysis result to test commits with high risks
first while delaying or skipping testing on low-risk commits.

To validate this idea’s feasibility, we conduct a study on 100 real-
world performance regression issues from three widely used, open-
source software. Guided by insights from the study, we design PRA

and build a tool, PerfScope. Evaluation on the examined problem-
atic commits shows our tool can successfully alarm 91% of them.
Moreover, on 600 randomly picked new commits from six large-
scale software, with our tool, developers just need to test only 14-
22% of the 600 commits and will still be able to alert 87-95% of
the commits with performance regression.
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D.2.5 [Software Engineering]: Testing and Debugging—Testing
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int bstream_rd_db_catalogue(...)

{

do {

if (bcat_add_item(cat, &ti.base.base) != BSTREAM_OK)

return BSTREAM_ERROR;

} while (ret == BSTREAM_OK);

}

int bcat_add_item(...)

{

switch (item->type) {

case BSTREAM_IT_PRIVILEGE:

Image_info::Dbobj *it1= info->add_db_object(...);

}

}

backup::Image_info::Dbobj* Backup_info::add_db_object(...)

{

}

The new block calls an expensive 
function. When indirectly executed 
inside a loop, it can incur 80 times 
slowdown

+  if (type == BSTREAM_IT_TRIGGER) {

+    obs::Obj*tbl_obj=obs::find_table_for_trigger(...);

+ }

Figure 1: A real-world performance regression (80 times) is-

sue in MySQL: the change causes an expensive function call

find_table_for_trigger to be executed many times.

1. INTRODUCTION

1.1 Performance Regression Testing
Performance is a vital quality metric for software system. It

can directly affect user experience and job efficiency. For exam-
ple, a 500 ms latency increase could cause 20% traffic loss for
Google [44]. As another example, the Colorado Benefits Manage-
ment System is designed to make social welfare accessible. But it
runs so slowly that the system is virtually unable to accept assis-
tance applications [18].

On the other hand, software today is evolving rapidly. Code
commits1 for feature enhancement, bug fixing or refactoring are
frequently pushed to the code repository. Some of these commits,
while preserving the software’s functionality, may significantly de-
grade performance, i.e., introducing performance regression.

Figure 1 shows a real-world performance regression issue from
MySQL. The added code commit was written without much con-
sideration for performance. When the code gets indirectly executed
inside a loop, it can cause MySQL’s backup operation to be 80
times slower. After this problem was reported, developers opti-
mized the added code and released a patch.

To provide motivating evidence, Figure 2 shows the releases con-
taining performance regression issue(s) in a snapshot of the evo-

1We use commit, revision and changeset interchangeably.
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Figure 2: Performance regression in modern popular software.

Data from performance regression bug reports studied in §2.

Table 1: Typical running cost for popular benchmarks.
Category Benchmark Per run cost

Web Server autobench,Web Polygraph,SPECweb 3 min–1 hr
Database pgbench,sysbench,DBT2 10 min–3 hrs
Compiler CP2K,Polyhedron,SPEC CPU 1 hr–20 hrs

OS lmbench,Phoronix Test Suite 2 hrs–24 hrs

lution history for two popular, performance-critical, open-source
software. These regression issues were user-reported ones, i.e.,
post-release. We can see that regressing releases are prevalent across
the evolution history of these two software packages.

Performance regression often damages software’s usability con-
siderably. In one example [7], switching from MySQL 4.1 to 5.0
in a production e-commerce website caused the loading time of
the same web page to increase from 1 second to 20 seconds. This
made the website almost unusable. The reporter complained that
“MySQL 5 is no good for production until this bug is fixed”. As
another example, after upgrading GCC from 4.3 to 4.5, Mozilla de-
velopers experienced an up to 19% performance regression, which
forced them to reconsider a complete switchover [29].

Performance regression has been a known problem for mature
and performance-conscious software projects. For example, in many
software issue tracking systems, there is a special category to anno-
tate issues related to performance. In the case of MySQL, a sepa-
rate severity level (S5) is used to mark performance-related reports.
Interestingly, among a set of 50 randomly sampled MySQL perfor-
mance regression issues (§2), almost half of them were also tagged
as S1 (Critical) or S2 (Serious).

1.2 Performance Regression Testing Challenges
An effective way to combat performance regression is to em-

ploy systematic, continuous performance regression testing. This
is widely advocated in academia [28, 57, 24, 46], open source com-
munity [45, 15, 36, 21] and industry [6].

Ideally, the testing should be carried out as comprehensively and
intensively as possible, i.e., on every source commit basis. This
can eliminate the “last-minute surprise” wherein performance is-
sues are exposed too late to be fixed before release [16]. More im-
portantly, this would avoid the tedious and lengthy diagnosis pro-
cess to figure out which commit is responsible for the observed
performance regression.

Unfortunately, despite the obvious benefits, real practices often
cannot afford performance regression testing for every commit due
to the combination of two factors: the high performance testing
overhead and the rapid software evolution pace.

Performance testing is supposed to measure systems under rep-
resentative and comprehensive workloads. It can take hours to days

Table 2: Estimated commit and performance testing frequency

in popular software.

Software
Avg. Rev.

Regular Perf. Testing
per Day

MySQL ∼ 6 every release [49]
Chrome ∼ 140 every 4 rev.
Linux ∼ 140 every week [21]

to complete even with a number of dedicated machines [3, 21, 23].
Table 1 lists the typical per run cost of several popular bench-
marks. A comprehensive performance testing often includes not
only these benchmarks but also load and stress testing suites. In a
leading, public US data warehousing company that we collaborate
with (anonymized as required), some internal test cases can take
almost one week to just load the data.

What’s more, performance testing results are subject to external
factors such as caching and testing environment load. To minimize
experimental errors, performance testing should be carried out in
a clean environment for a period long enough and repeated sev-
eral times until the performance becomes stable [36, 5, 1]. Con-
sequently, performance testing guide often advocates to “never be-
lieve any test that runs for only a few seconds” [9, 46]. In this sense,
performance testing is by nature time and resource consuming.

On the other hand, the increasingly favored rapid development
methodologies such as agile development [43] are catalyzing soft-
ware revision speed. As Table 2 shows, Chrome and Linux have
more than 100 revisions per day merged into the code base. With
the high revision rate and high testing cost, it is almost impractical
to run comprehensive performance testing on every commit.

1.3 Current Practices
The above factors often cause performance regression testing

frequency to be compromised. Testing is carried out on daily or per
release basis (Table 2). When performance regression is exposed,
developers have to spend extra efforts bisecting [4] which commit
among the recently committed changes causes the problem. For
example, in diagnosing a Chrome performance regression issue [2]
revealed during testing, there were six revisions included since last
testing. The developers had to conduct bisection to narrow down
the problematic commit, which already took hours.

With performance test case prioritization, a technique as used
in feature regression testing [51, 25], the testing frequency can be
increased but at the cost of reduced comprehensiveness. In this
scheme, test cases are divided into multiple levels based on their
overhead and ability to catch performance issues. Then lightweight
test cases with high detection rate are run more frequently while
costly tests are run infrequently. Our industry collaborator adopted
this practice. Such prioritization is effective to capture easy-to-
trigger performance regression. But the detection of complicated
issues that are manifested only under the comprehensive test cases
are delayed because of reduced comprehensiveness.

1.4 Our Contributions
Given that performance testing frequency and the commit speed

are not in synchrony, it is important to fully utilize the testing cost.
To this end, it is desired to devote testing on exactly the regressing
commits and skip non-regressing commits. But existing practices
as above all treat the testing target—code commits—as black-box,
ignoring the valuable information in commit content that may be
exploited to direct performance testing on the right target. Conse-
quently, the testing is carried out blindly even for commits that are
unlikely to introduce performance regression.
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Table 3: Studied software.
Software Description LOC # of Issues

MySQL DBMS 1.2M 50
PostgreSQL DBMS 651K 25

Chrome Web browser 6.0M 25

Our work takes this complementary approach by leveraging the
information in each code commit to help prioritize performance
regression testing on risky commits. In particular, by conducting
a lightweight, static performance risk analysis (abbr. PRA, here-
after) on source code change, we estimate the risk of this revision in
introducing performance regression issues. Based on such estima-
tion, we can prioritize performance testing to conduct more com-
prehensive tests for high-risk revisions while lowering the testing
cost for low-risk ones.

For example, by statically analyzing the added code in Figure 1,
we know it can be executed indirectly inside a loop. With static cost
estimation and profile information, our PRA will recommend this
commit to be tested heavily. On the other hand, for commits like
adding few arithmetic operations in a cold path, we could suggest
skipping testing or testing it lightly.

The major contributions of this paper are:
• We conduct an empirical study on 100 real-world perfor-

mance regression issues from three widely used software to
gain insights on the feasibility and approaches for testing tar-
get prioritization with commit performance risk analysis.
• To the best of our knowledge, we are the first to propose a

white-box approach on prioritizing performance testing tar-

gets with code change performance risk analysis (PRA) to
make performance regression testing more efficient.
• We implement a tool and release it in open source. Evalua-

tion on the studied commits as well as 600 randomly selected
new commits shows that based on the recommendation of our
tool, developers just need to test only 14-22% of the 600 code
commits and will be able to catch 87-95% of all performance
risky commits.

2. UNDERSTANDING REAL WORLD PER-

FORMANCE REGRESSION ISSUES

To validate the feasibility of performance regression testing tar-
get prioritization and design an effective PRA, we conduct an em-
pirical study on 100 randomly selected real-world performance re-
gression issues from three widely used, open source software. The
study focuses on understanding what kind of code changes would
cause performance regression and how they impact performance.

Designing in this bottom-up manner may suffer from the over-
fitting problem. To address this concern, we also evaluate our pro-
posed PRA on 600 randomly selected new code commits that are
not used in the study described here.

2.1 Software Studied
Table 3 lists the details of studied software. We choose these

software packages because they are performance critical, top-rated,
widely used and industry-backed. Chrome is developed by Google;
MySQL is now owned by Oracle; and PostgreSQL’s development
team consists of employees from Red Hat. Besides, their long evo-
lution history and well-maintained issue tracking systems provide
us with many real-world performance regression issues.

2.2 Issue Collection Methodology
For each software, we first query the tracking system or mailing

list with a set of broad performance-related keywords like “perfor-

mance”, “hit”, “drop”, “slow”, “slower” on resolved issues. After
getting this initial collection of issues, we manually go over each
to prune out those issues unrelated to performance regression. Fi-
nally, we randomly sample 100 issues of which not only the fixes
can be found, but also the responsible change set can be tracked.

2.3 Threats to Validity
Construct Validity Our study has high construct validity because
all the issues we collect are indeed related to performance regres-
sion issues based on issue symptom description from the reporter
and confirmation of issue fix from the developer.
Internal Validity There is potential selection bias in our study. We
try to minimize it by first covering diverse categories and represen-
tative software. Except for Chrome which is landed in 2008, the
other two software projects have more than 10 years of history. Ad-
ditionally, the issues we study for each software are randomly sam-
pled without favoring or ignoring particular type of performance
regression issues. For each issue, we write a diagnosis report and
have at least 2 inspectors agree on the understanding.

Another potential threat is unreported performance regression is-
sues. It is difficult to measure quantitatively them. However, we
believe that at least the reported issues are of importance.
External Validity Although we believe our study provides inter-
esting findings on performance regression issues in studied repre-
sentative software, they may not be generalized to other software
projects beyond the specific scope this study was conducted. Thus
they should be taken with limitations in mind.

Most importantly, we want to emphasize the primary purpose
of this study is for ourselves to gain insights for designing PRA,
instead of drawing any general conclusions. Therefore, the poten-
tial threats to validity in the study will only impair the efficacy of
our design. Nevertheless, as evaluation demonstrates (§5), the PRA

guided by this study is indeed effective, even for 600 new code
commits that are not examined in our empirical study.

2.4 Code Change Categorization
To analyze what kind of code changes are likely to introduce per-

formance regression, we develop a taxonomy. The key rationale is
that program performance depends on how expensive an operation
is and how many times the operation gets executed. Therefore, per-
formance regression could be introduced by either more expensive
operations or regular operations but executed many times in a crit-
ical path. As a starting point, we need to look into what and where

are the code changes in their execution context. Moreover, we need
to consider code changes that indirectly impact expensive opera-
tions or critical path. For example, a code change that modifies a
variable controlling the loop iteration count in a critical path may
have a big impact on performance. We further zoom into each of
the three perspective and divide it into subcategories. The subcate-
gories may not exclusive. For example, in the where perspective, a
change could lie in both a loop and a primitive function. We choose
the first applicable subcategory in top to bottom order.

In our study, we consider only code changes that are the culprits
for performance regression, ignoring innocent changes in the same
commit. Also we focus on changes that impact the performance
of existing functionalities, ignoring changes for independent, new

functionalities that do not interact with existing ones. The result
based on this categorization methodology is presented in Table 4.

2.4.1 Where a Change Takes Place

Program scopes such as loop or primitive function are perfor-
mance sensitive places. It is because these places can be executed
or called many times and magnify any overhead added inside them.

62



Table 4: Categorization of issues examined from three perspectives.

Category
Software

MySQL PostgreSQL Chrome
Where the change takes place

API (Can be called a lot of times by external program) 5 (10%) 0 (0%) 1 (4%)
Primitive(Utility) Function (Can be called a lot of times internally, e.g. mutex_spin_wait) 9 (18%) 4 (16%) 1 (4%)
Routine Function (Will definitely be called under various input, e.g. MySQLParse) 7 (14%) 4 (16%) 8 (32%)
Loop (Can have multiple iterations) 12 (24%) 8 (32%) 4 (16%)
Others 17 (34%) 9 (36%) 11 (44%)
What the change modifies

Expensive Function Call (e.g. Figure 4) 21 (42%) 9 (36%) 16 (64%)
Performance Sensitive Condition (e.g. Figure 5) 8 (16%) 6 (24%) 4 (16%)
Performance Critical Variable (e.g. Figure 3) 6 (12%) 5 (20%) 2 (8%)
Others (e.g. overhaul) 15 (30%) 5 (20%) 3 (12%)
How the change impacts performance

Direct (e.g. Figure 1) 34 (68%) 11 (44%) 12 (48%)

Indirect, Latent

Through Function Return Value (e.g. Figure 5) 7 (14%) 7 (28%) 3 (12%)
Through Function Referential Parameter (e.g. Figure 3) 5 (10%) 4 (16%) 1 (4%)
Through Class Member 1 (2%) 1 (4%) 3 (12%)
Through Global Variable 1 (2%) 0 (0%) 1 (4%)
Others 2 (4%) 2 (8%) 5 (20%)

Total 50 25 25

Hence we first categorize all the problematic changes based on the
scopes that they lie in.

We also need to be context sensitive and consider call paths.
For example in Figure 1, although the added expensive function
call find_table_for_trigger is not inside loop in the static
context, if the expensive call path is executed, it will be dynami-
cally executed in a tight loop (loop that iterates many times). There-
fore, when we design PRA, we need to be context sensitive and
examine possible call paths.

Table 4 shows more than half of the problematic changes are
located in performance sensitive scopes. However, using change
scope as the sole indicator of performance regression can miss some
performance killers that can influence critical paths via data and
control flow. That is why there are a significant number of regres-
sion issues in the Others subcategory in Table 4. For this reason,
we further categorize the change content.

Implication: PRA should pay attention to common perfor-
mance critical places such as loop and primitive function. But
using only place as criteria can incur high analysis inaccuracy.

2.4.2 What a Change Modifies

Intuitively, for a change set to introduce performance regression,
it needs to add high overhead (computation or I/O). Such influence
can happen in two ways: one case is that the change directly adds
significant cost into hot path; another case is that the change mod-
ifies some “control” variables which result in an expensive code
region to iterate more times or take a longer execution path.

The former case is straightforward (especially if our PRA can be
context sensitive), whereas the latter would require us to consider
some special variables and their control and data dependencies. We
refer to the variable of which different values can result in dramat-
ically different performance as performance critical variable (e.g.,
loop iteration count, database table index variable as in Figure 3)
and the condition that controls whether a critical path will be taken
in a branch as performance sensitive condition (e.g., the branch
condition in function create_sort_index in Figure 5).

In the study, we obtain information regarding whether operations
are expensive or performance critical by reading the bug reports
and consulting with developers. In our implementation of PRA, we
obtain such information from static analysis and profiling.

As table 4 shows, expensive function calls is the most common
problematic change content. But other types of changes such as
modifying the performance critical variable and performance sen-
sitive condition also cause a significant number of performance re-
gression issues in the dataset.

Implication: PRA should also account for the code change
content to identify costly instructions and performance critical
variables or sensitive conditions.

2.4.3 How a Change Impacts Performance

As explained above, not all problematic changes affect perfor-
mance in a direct way. A change may propagate via data and con-
trol flow that eventually causes a performance problem in its for-
ward slice. For example, in Figure 5, although the change itself
is not expensive, it modifies the function return value, which later
determines whether an expensive filesort is called.

Thus we divide all the perilous changes into two categories based
on how they impact performance: (1) changes that directly de-
grade performance in its execution scope; (2) changes that indi-
rectly cause performance problem later in other code regions.

Table 4 shows the majority of the issues belong to the first cat-
egory. But there are also a significant number of issues impacting
performance indirectly. For these issues, the table also lists the pro-
gram constructs through which the change propagates its effect to
critical paths and thereby leads to performance degradation. Most
of them are through function return values.

Implication: PRA should follow the control and data flow to
factor in the indirect effect of a change. The analysis should be
inter-procedural and context-sensitive.

2.5 Case Studies
We now go through three performance regression issues from

MySQL as case studies.
The issue in Figure 4 is introduced when patching a functional-

ity bug in MySQL Cluster. This commit changes the system call
clock_gettime argument to use CLOCK_MONOTONIC instead
of real-time clock to prevent potential hang in certain scenarios.
But in some platform like Solaris, clock_gettime call is ex-
pensive when using CLOCK_MONOTONIC. This extra overhead is
further amplified when it is called in a tight loop.
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+      if (table->s->primary_key != MAX_KEY &&

+      table->file->primary_key_is_clustered())

+      tab->index= table->s->primary_key;

+      else

The new logic prefers clustered 
primary index over secondary 
ones. It degrades performance 
for certain workloads.

uint make_join_readinfo(JOIN *join, ulonglong options)

{

for (i=join->const_tables ; i < join->tables ; i++) {

JOIN_TAB *tab=join->join_tab+i;

tab->index=find_shortest_key(table, ...);

}

}

int join_read_first(JOIN_TAB *tab)

{

if (!table->file->inited)

table->file->ha_index_init(tab->index, tab->sorted);

}

Figure 3: MySQL performance regression issue #35850

NDB_TICKS NdbTick_CurrentMillisecond(void)

{

struct timespec tick_time;

return tick_time.tv_sec * MILLISEC_PER_SEC +

tick_time.tv_nsec / MILLISEC_PER_NANOSEC;

}

int waitClusterStatus(const char* _addr,...)

{

while (allInState == false){ ...

time_now = NdbTick_CurrentMillisecond();

}

}

Replacing realtime clock with monotonic for clock_gettime sys call has 
performance loss in Solaris. When put in loop, this loss can be up to 15%

+ clock_gettime(CLOCK_MONOTONIC, &tick_time);

- clock_gettime(CLOCK_REALTIME, &tick_time);

Figure 4: MySQL performance regression issue #46183

In Figure 5, function test_if_skip_sort_order decides
whether it can leverage database table index to perform the ORDER
BY query or an actual file-sort is necessary. The new optimization
rule prefers file-sort with a join buffer over an index scan if possi-
ble. In such case, it returns 0. However, when an index is clustered,
index scan can actually be much faster than the preferred file-sort.
As a result, this premature optimization code change causes perfor-
mance slowdowns for these types of data layout.

Similarly, the new optimization in Figure 3 prefers clustered pri-
mary key over secondary key. While this can speed up disk-bound
workloads, it slows down cases when the data is in disk cache.

3. PERFORMANCE RISK ANALYSIS

3.1 Overview
The objective of PRA is to examine source code commit content

and determine whether the commit is likely to introduce perfor-
mance regression. Therefore, PRA is a white-box approach. But
PRA is not meant to replace performance regression testing. On
the contrary, its main consumer is performance regression testing.
It recommends risky commits to performance regression testing to
test comprehensively and suggests skipping low-risk commits.

This role relaxes the safety and soundness requirement for PRA.
In the extreme case, if PRA recommends every commit to be tested,
it is the same situation as testing without PRA; if PRA recommends
to skip a commit that is actually risky, it is similar as conducting
infrequent such as per-release testing. That said, PRA should aim

bool test_if_skip_sort_order(...)

{

if (select_limit >= table_records) {

}

DBUG_RETURN(1);

}

int create_sort_index()

{

if ((order != join->group_list || ... && 

test_if_skip_sort_order(...))

DBUG_RETURN(0);

table->sort.found_records=filesort(thd, 

table,join->sortorder, ...);

}

+      /* filesort() and join cache are usually

+         faster than reading in index order

+        and not using join cache */

+      if (tab->type == JT_ALL && ...)

+       DBUG_RETURN(0);

The new control flow can change 
the function return value, which 
later affects whether an expensive 
path (with firesort call) will be 
taken or not 

Figure 5: MySQL performance regression issue #50843

to flag the commits’ risk accurately to be able to truly improve per-
formance regression testing efficiency.

3.2 PRA Design
PRA is essentially static performance risk estimation of code

changes. The challenge is how to reason about performance impact
without actually running the software. Guided by the real world
issue study, the performance impact of a code change depends on
the cost of change operations (whether it is expensive or not) and
the frequency of its execution (whether it lies in hot path or not).

Therefore, we design PRA as follows. First, we use a cost model
to estimate the expensiveness of a change instruction. If the change
touches performance sensitive conditional expression, it is also con-
sidered expensive. Then, we estimate the frequency of the change
instruction. With the two estimations, we index them into a risk
matrix to assess the risk level. The risk levels for the entire patch
can then be aggregated into a single risk score.

3.2.1 Cost Modeling

To establish a systematic and efficient estimation regarding the
expensiveness information, a static cost model for different oper-
ations is necessary. The cost modeling will determine whether a
change instruction is expensive or not.

Since the purpose of the modeling emphasizes on relative cost
rather than absolute cost, we express cost in abstract unit, denoted
as δ, instead of actual CPU cycles. With simple architecture model
and heuristics, we build a basic cost table for different instructions
based on its type and operands. For example, add instruction has
cost δ, multiply has cost 4δ and call instruction has the cost
equal to calling convention overhead plus the callee’s cost.

A basic block’s cost is a sum of the cost of those instructions that
live inside the basic block. For control flows, we adopt worst case
analysis. For example, the cost of a function or a loop body is the
maximum cost among the static paths.

Next, we assume if an operation has cost δ, and it’s executed 10
times, the aggregated cost is 10δ. While this assumption doesn’t
account for factors such as compiler optimization, it is a good start
for the purpose of risk assessment. Then for a loop, if its trip count

(maximum number of iterations) can be statically inferred, we mul-
tiply the loop body’s cost by the trip count as the loop’s cost. Oth-
erwise, the loop is considered to be potentially expensive.
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Table 5: Risk matrix of a change’s expensiveness and frequency
Frequency

Expensiveness
Frequent Normal Rare

Expensive Extreme High Moderate
Normal High Moderate Low
Minor Moderate Low Low

With this model, we can obtain cost in terms of δ, whereas PRA

needs to gauge whether the cost is expensive or not. We use thresh-
olds to convert the cost into level. Such thresholds can be config-
ured or computed automatically by running the cost model on the
whole program to obtain cost distribution for functions and basic
blocks. Then the cost of a change is ranked in the distribution to
convert to expensiveness. Besides this static model, we also allow
users to add dynamic profile information or domain knowledge to
make PRA more accurate. But this is only optional for PRA.

The above modeling mainly deals with add code change type.
Code change can also be deleting or replacing statements. For
delete type changes, we can offset their direct cost from the total
cost. In current implementation, we do not want to make PRA ag-
gressive that miss potential performance regression issues due to
inaccurate offsetting. Therefore, the cost of a delete change is by
default 0. The theoretical cost for a replace type change would be
new.cost − old.cost. But for similar reason, the cost of a replace
change is the cost of new program elements. The exception is: if
a delete or replace change touches performance sensitive variables
or conditions, the change cost is directly assigned to be expensive.

3.2.2 Performance Sensitive Condition/Variable

Condition expressions need special attention. Conditional branch
instruction itself is rarely costly. But as seen from the real world
study, a condition can significantly influence whether an expen-
sive path will be taken or not. We define a branch condition to
be performance sensitive if its intra-procedural paths (successors)
have dramatic cost difference, which is estimated using above cost
model. For example, the branch condition for the first if statement
in function create_sort_index in Figure 5 is a performance
sensitive condition. Change affecting such performance sensitive
condition is considered expensive.

For performance critical variable, we currently only considers
variable that can affect loop termination condition. We leave sys-
tematically identifying performance critical variable such as the ta-
ble index variable in future work.

3.2.3 Frequency Estimation

In addition to estimating the cost of change content, we should
also analyze whether the change lies in hot path. To do this, we
first analyze the intra-procedural scope that a change lies in. If the
change is enclosed in any loop and the trip count of this loop in-
cluding all its parent loops can be statically determined, the execu-
tion frequency of this change instruction is estimated by the prod-
uct of these trip counts. Otherwise, if any of enclosing loop has
non-determined trip count, it is considered to be possibly executed
frequently. Similarly code change that lies in recursive functions is
also assessed to be potentially frequently executed.

Next, we examine the call path backward that could potentially
reach the function where the change is located and perform similar
frequency estimation for each call site. In implementation, the level
of call path length is bounded. Given the estimation, we conclude
if a change lies in the context that may be frequently executed using
a ranking of the frequency count.

Mapper Filter

--- origin

+++ new

patch

Patch 

Parser

Performance

Risk Analyzer

Performance Regression Testing

Profile DB

Code 
Repository

Figure 6: Architecture of our PRA implementation, PerfScope

3.2.4 Risk Matrix

Combining the above two pieces of information, we use a risk
matrix (Table 5) to assess the risk. Such matrix can be extended to
express more expensiveness/frequency categories and risk levels.
The output of PRA is therefore the risk level distributions. We also
calculate a simple risk score based on the distribution:

Risk Score = Nextreme × 100 + Nhigh × 10

+Nmoderate ×

1

100
+ Nlow ×

1

1000

(1)

Practitioners can then define testing target selection criteria against
the risk level distribution or summary score. For example, commits
with Nextreme >= 5||Nhigh >= 20 or whose risk score exceeds
300 require comprehensive testing. Like in choosing the criteria
in performance testing to judge regression, for different software,
these criteria may also require some initial tuning.

3.2.5 Indirect Risk

As Section 2 shows, in addition to direct performance impact,
there are also a number of risk commits that indirectly affect perfor-
mance via data flow and control flow to their forward slice, the pro-
gram subset that may be affected by a given program point. There-
fore, we extend the basic PRA with the ability to analyze such cases,
named PRA-Slicing. We use static program slicing techniques [55]
to compute a forward slice of the change set. Then we check if any
element in the slice is performance sensitive or not using the logic
as described in 3.2.2. The final risk level is only assigned once
to the change instruction instead of its slice. The slicing is inter-
procedural and bounded to a limited depth. While PRA-Slicing can
catch more complicated risky commits, it may also recommend ex-
cessive commits due to the imprecisions in the slicing. Moreover,
computing precise slice can be expensive. Consequently, PRA-

Slicing remains an extension to the main PRA analysis and is dis-
abled by default.

4. IMPLEMENTATION
We develop a tool called PerfScope that implements the proposed

PRA on top of the LLVM compiler infrastructure [39]. The tool is
released in open source at
http://cseweb.ucsd.edu/~peh003/perfscope.

4.1 Architecture
We first briefly describe the architecture of PerfScope. It consists

of five components (Figure 6).
Parser parses patch information regarding the changed files, lines

and types (add, delete, change). For the change type, unified diff
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file contains add and delete but no replace. The parser will pair
delete with add and reduce them to replace.

Mapper extracts debug information of a program, build search
trees and map given lines to the program constructs, if any, which
are fed to the filter.

Filter prunes out insignificant change such as stylish change or
renaming. If all changes in the entire commit are filtered, the com-
mit will be considered trivial and not fed to the analyzer.

Profile database (optional) allows users to incorporate profile
information and domain knowledge that may make PRA more ac-
curate. Such profile can be practically incorporated because for
large software, the cost of many functions doesn’t change very fre-
quently. Therefore, the profile does not need frequent update.

But note that, PRA already provides a cost model (§3.2.1). The
profile information is only optional. Interestingly, we obtained the
profiles for several software using a popular low-overhead, system-
wide profiler—OProfile [8], and found the expensive function list
has a large portion of overlap with the list computed by PRA.

Performance risk analyzer runs PRA or PRA-Slicing on the
language constructs remained after filtering. It computes the risk
level (e.g., extreme, high, moderate) of a change using a risk ma-
trix like in Table 5). The output of the analyzer is a risk level dis-
tribution from all changes in the commit and a summary risk score.
The two results can be used by performance testing practitioners to
determine the performance testing strategy for the commit.

4.2 Challenges
There are two key challenges in implementing PerfScope.
Mapping: Raw information in patch files produced by standard

tools like diff are language agnostic and in line granularity. But
PRA works on language constructs. For example, it needs to know
the change on line 10 corresponds to an if statement.

LLVM provides debugging information such as line number, file
path attached in instructions. We use this information to build a
search tree. We first find the compile unit for the changed source
files, then match the top level constructs such as functions inside
that unit and finally the corresponding instruction(s).

Filtering: There are changes on non-source files such as the doc-
umentations, test cases. It is unlikely for them to introduce perfor-
mance regression. We predefine a set of source code suffixes, e.g.,
.c, .cpp, to filter non-source changes. We also prune changes on
source files that essentially do not alter the program (e.g., add com-
ments, rename variables). We only perform safe, simple checking
instead of trying to determine general equivalence of two programs,
which is undecidable. Algorithm 1 shows the filtering logic.

5. EVALUATION
This section evaluates the effectiveness and efficiency of our

PRA implementation, PerfScope. It consists of six parts. First, we
test whether PerfScope is able to report these problematic commits
from our real-world issue study. Second, to address the overfit-
ting concern, we also evaluate PRA using 600 new commits from
both studied software and unstudied ones. Third, we evaluate PRA-

Slicing extension and also compare our design with random test tar-
get selection. Fourth, we estimate the practical testing cost savings
with PRA. Fifth, we show the sensitivity of parameters used in the
experiment. The last part shows the overhead of PerfScope.

5.1 Subject Software
Six large-scale (up to millions of lines of code), popular open-

source software are used as our subjects. They range from database
system (MySQL, PostgreSQL), compiler (GCC), web (caching)
server (Apache, Squid) and JavaScript Engine (V8, used in Chrome).

Algorithm 1 Determine if a change is trivial

Input: change C, source code suffix set Suffixes, before-revision
program OldP, after-revision program NewP

Output: True if C is trivial, False otherwise
1: if C.file.suffix /∈ Suffixes then

2: return True
3: end if

4: /* map: get instructions at a line in a program */
5: new_instrs← map(C.new_line, NewP)
6: old_instrs← map(C.old_line, OldP)
7: if new_instrs.empty and old_instrs.empty then

8: /* change only comments, spaces, etc. */
9: return True

10: end if

11: if new_instrs.size 6= old_instrs.size then

12: /* change added or deleted instructions */
13: return False
14: end if

15: for i← 1 to new_instrs.size do

16: /* diff: compare two instructions’ opcodes and operands */
17: if diff(old_instrs[i], new_instrs[i]) = True then

18: return False
19: end if

20: end for

21: return True

Table 6: Subject Software.
Software LOC Studied?

MySQL 1.2M Yes
PostgreSQL 651K Yes
Apache httpd 220K No

Squid 751K No

GCC 4.6M No

V8 680K No

Among them, GCC, Apache, Squid and V8 are not used in our real-
world study. Table 6 summarizes the details.

5.2 Methodology

Table 7: Benchmarks and regression thresholds used for sub-

ject software. §5.2.1 describes how we obtain the thresholds.
Software Benchmarks Threshold
MySQL DBT2, SysBench, sql-bench 6%

PostgreSQL DBT2, SysBench, pgbench 6%
Apache httpd SPECweb2005, autobench, ab 20%

Squid Web Polygraph, autobench 10%
GCC CP2K, SPEC CPU2006 3%
V8 Octane, SunSpider 10%

5.2.1 Ground Truth for New Commits

For the studied commits, we already know they caused perfor-
mance regressions. But for the new commits, since they are taken
from recent code repository, few feedback on them exists. We need
to get the ground truth for each commit with respect to whether it
may introduce performance regression. Therefore, we run multiple
standard, moderately intensive performance benchmarks on each
compiled revision of subject software. These benchmarks are often
used internally and in user-reported regression cases. Each bench-
marking is run multiple times.
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Table 8: Coverage of studied problematic commits.

Software
Buggy PRA
Rev. (Ratio)

MySQL 39 36
PostgreSQL 25 23

Total 64 59 (92%)

With the benchmarking results, we can compute the performance
deviation of a commit from the previous commit. Then if the devia-
tion exceeds certain threshold, the commit introduces performance
regression. Therefore what thresholds to use for judging perfor-
mance regression is crucial. However, there is inevitable bias in
choosing the criteria because performance regression is a funda-

mentally subjective definition. Different practitioners and software
use different judgment. For example, in our real-world study, the
user-reported performance regression issues contain a variety of
criteria even for the same software.

To reduce the inevitable selection bias, we refer to the common
practices. In particular, we sample each software’s issue tracker,
code commit comment and developer posts to see what degree of
performance deviation starts to attract practitioners’ attention. We
then choose the minimum as our criteria. Table 7 lists the bench-
marks and thresholds we use for each software.

Sometimes the commit causing repeatable regression (i.e., the
regression is observed consistently when the testing is exercised
several times) may not be a performance bug but rather an expected
performance behavior (e.g., a patch adding authentication step to
existing work flow introduces performance overhead). It is up to
developers to decide whether a repeatable regression is expected
or not. PRA is not a performance bug detector. It mainly serves
performance testing and therefore only target on repeatable regres-
sion rather than performance bug. Therefore, if PRA recommends
a commit that can indeed manifest repeatable regression in perfor-
mance testing, the recommendation is considered to be useful.

5.2.2 Setup

The benchmarking is carried out on three dedicated machines,
each with Intel i7 Quad Core CPU 3.40 GHz, 16GB RAM. The per-
formance overhead measurement is run on the same machines. Ad-
ditionally, as PRA outputs the distribution of the change set’s risk
levels and a score, we need a criterion for recommending perfor-
mance regression testing. We set it to be if risk score (Equation 1)
is larger than 200. §5.7 evaluates the sensitivity of this criterion.

5.3 Evaluation on Studied Commits
Table 8 presents the coverage on the studied problematic com-

mits. 11 commits from MySQL issue study are omitted because
these changes are for source languages other than C/C++, which
our tool currently supports. Chrome is not evaluated because the
compiler our analysis bases on, LLVM Clang, cannot reliably com-
pile Chrome into whole-program LLVM bitcode files for analysis
rather than because of our analysis.

As the table shows, PRA can report majority (92%) of these re-
gressing commits. Although the basic PRA does not implement
slicing, it still can capture cases in the “Indirect” category in Ta-
ble 4. This is because, the categorization only focuses on the root

cause. It can be the case that a change impacts performance indi-
rectly but happens to lie in a loop.

A few cases are missed by PRA either because of long propaga-
tion impact or complicated domain knowledge. Listing 1 is such
an example. More detailed profile information and deeper analysis
are needed to be able to alert on them.

Listing 1 Commit not alarmed by PRA

void init_read_record(READ_RECORD *info,THD *thd,)

{

/* The patch sets mmap flag, which later causes a

function pointer to be changed to mmap. */

+

+ if (table->s->tmp_table == TMP_TABLE &&...)

+ VOID(table->file->extra(HA_EXTRA_MMAP));

+

5.4 Evaluation on New Commits
Since our PRA design is guided by a real-world issue study, it

might be tailored for these examined buggy commits. Therefore,
we also evaluate the tool on 600 new commits from both studied
and unstudied software. Table 9 presents the result.

The After Filtering column is the number of commits remaining
after pruning. The filtered commits (by our tool) either only change
non-source files or only have insignificant changes on source files.
Interestingly, filtering already reduces a significant number of com-
mits not worth consideration for performance regression testing.
For example, in Apache, more than one third of the commits are just
updating documentation files or code styles. We manually checked
the filtered commits are indeed trivial.

Our tool PerfScope can successfully reduce at least 81% of the
450 testing candidates (86% if no filtering is conducted in existing
testing) and alarm 87% of the new risky commits. In other words,
with our tool, developers only now need to test 19% of the original
450 commits and still be able to alert 87% of the risky commits.
This means our PRA design can significantly reduce performance
testing overhead while preserving relatively high coverage.

From the table, we can also read the number of commits that
are reported by PerfScope but not confirmed by our benchmarking
from Rec. Commits − (Risky Commits −Miss). However,
they should not be interpreted false alarms for two reasons. First,
PerfScope is not a bug detection tool but only to reduce testing
overhead. These “additionally” recommended testing targets need
to be tested anyway in the original performance testing scheme
without using PRA. Second, the Risky Commits in the table are
lower bounds because of the limitation of our benchmarking. There-
fore, some of these additional commits might turn out to be indeed
risky if tested more comprehensively.

5.5 Extension and Alternative Solution
PerfScope also implements an extension to PRA: PRA-Slicing

(§3.2.5). In addition to the basic analysis, PRA-Slicing also per-
forms forward slicing of each change in the commit and checks if
any element in the slice is performance sensitive or not.

Table 9 also shows the evaluation of PRA-Slicing. PRA-Slicing

performs deeper analysis and as a result has higher coverage (95%)
but at the cost of lower reduction percentage (78%).

A simple alternative to PRA is random test target selection. The
probability for this approach to achieve the same or better result as
our tool in Table 9 is only 1.2× 10−65 (calculated using script 2).

5.6 Practical Cost Saving
The objective of PRA is to reduce the testing target set to the

risky commits for performance regression testing. Previous sec-
tions mainly evaluate the number of reduced testing target. How
much does the reduction translate to actual testing cost saving? It
depends on how comprehensive the original testing is carried out.

2
http://ideone.com/6d70fJ
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Table 9: Evaluation of PerfScope on new commits. *: the filtering is done automatically by our tool with Algorithm 1. For reduction

rate and testing saving, larger number is based on the 600 commits; smaller number is based on the 450 commits.

Software
Test Risky After PRA PRA-Slicing

Commits Commits Filtering ∗ Rec. Commits Miss Testing Rec. Commits Miss Testing
(Reduction) (Coverage) Savings (hrs.) (Reduction) (Coverage) Savings (hrs.)

MySQL 100 9 73 19 (74–81%) 2 324–486 22 (70–78%) 1 306–468
PostgreSQL 100 6 76 12 (84–88%) 0 384–528 16 (79–84%) 0 360–504

GCC 100 6 76 18 (76–82%) 1 870–1230 19 (75–81%) 0 855–1215
V8 100 7 85 13 (85–87%) 2 3–4 17 (80–83%) 1 3–4

Apache 100 5 60 11 (82–89%) 0 74–134 12 (80–88%) 0 72–132
Squid 100 6 80 12 (85–88%) 0 204–264 14 (83–86%) 0 198–258
Total 600 39 450 85 (81–86%) 5 (87%) 1859–2646 100 (78–83%) 2 (95%) 1794–2581
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Figure 7: Sensitivity of PerfScope’s reduction rate and cover-

age rate of the new commits evaluation to the recommendation

criterion (≥ risk_score_threshold).

In our experiment, we run the benchmarks using recommended set-
tings from popular performance testing guides or the tools.

Therefore, we calculate the expected testing cost saving accord-
ing to our setup. As we run multiple benchmarks for each software,
we use the average running cost as the per iteration testing cost.
The per commit cost is calculated by multiplying the per iteration
cost with 3 iterations as used in our experiment. In specifics, for
MySQL and PostgreSQL, the per commit testing cost is 6 hours;
for GCC, it is 15 hours; for V8, it is 3 minutes; for Apache, it is 1.5
hours; for Squid, it is 3 hours;

Table 9 lists the result. The lower saving is calculated assuming
the original testing already skips all non-essential commits. The
higher saving assumes no filtering is conducted. PerfScope is most
useful for software whose original performance regression testing
cost is big. For example, for GCC, the saving can be almost two
months. However, for V8, the saving is limited because the bench-
mark we use only takes minutes to test one revision. Admittedly,
for software whose performance testing overhead is very small,
PerfScope does not save much. Directly running performance test-
ing on every commit is then a better option. One possible usage
scenario for this type of software is to run PerfScope as “cross ref-
erence” with the performance testing result.

5.7 Sensitivity
Since the output of PRA is risk level distribution and a summary

score, a criterion based on the output is necessary to decide whether
to recommend the given code commit to be tested. The evaluation
in previous sections used the 200 risk score threshold as the criteria.

Figure 7 measures the reduction and coverage sensitivity to the
risk score threshold. In general, reduction rate increases as the risk

Table 10: PerfScope running time (in seconds) and break-

down. The numbers in parentheses are for PRA-Slicing.

Software
Loading Analysis Total
Module (PRA-Slicing) (PRA-Slicing)

MySQL 40 6 (195) 46 (235)
PostgreSQL 11 2 (183) 13 (194)

GCC 36 5 (253) 41 (289)
V8 86 10 (259) 96 (344)

Apache 5 1 (4) 6 (9)
Squid 28 5 (6) 33 (34)

score criteria increases because higher threshold would result in
fewer number of commits to be recommended and thus achieving
higher reduction; in contrast, coverage decreases as the criteria in-
creases. Such variety means, like performance regression testing
result judgment criteria, the selection criteria requires initial tun-
ing. But as seen from the figure, the sensitivity in certain threshold
ranges is is small because problematic and regular commits usually
have quite different risk level distribution.

5.8 Performance
As the primary goal of PRA is to reduce performance testing

overhead through testing target selection, the analysis itself shouldn’t
become a new bottleneck.

Table 10 shows that in the evaluated software, PerfScope’s aver-
age execution time is within 2 minutes for PRA and 6 minutes for
PRA-Slicing. The “Loading Module” breakdown is the time to load
LLVM object files for analysis using LLVM API ParseIRFile.
It is a constant cost and occupies a large portion of the total time
for both PRA and PRA-Slicing.

6. RELATED WORK

Performance Regression Testing: There are case studies and re-
search effort on performance regression testing in software sys-
tems [21, 36, 60, 17, 30]. To name a few, [21] details the Linux ker-
nel performance testing project to catch kernel performance regres-
sion issues. [36] shares the experience in automating regression
benchmarking for the Mono project. [17] proposes a model-based
performance testing framework to generate appropriate workloads.
[30] offers a learning-based performance testing framework that
automatically selects test input data based on learned rules. [61]
uses symbolic execution to generate load test suites that expose
program’s diverse resource consumption behaviors.

These efforts focus building better performance regression test-
ing infrastructure and test cases. Our work assumes the existence
of good performance testing infrastructure and test cases, and im-
proves the testing efficiency by prioritizing testing target.

Performance Bug Detection and Analysis: A wealth of literature
exists on performance analysis with regard to performance debug-
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ging [11, 53, 41, 31], performance bug detection [37, 35, 34, 59],
performance regression testing result analysis [26, 27].

Similar to these work, the ultimate goal of our work is to help un-
cover performance problems. But we do not attempt to detect per-
formance regression bugs or provide forensic diagnosis but target
on recommending risky commit for performance regression test-
ing. For the performance regression testing result analysis work,
we complements the work by improving performance testing effi-
ciency by better utilizing the testing resources on risky commit.

Regression Testing Efficiency: Much work has been done to re-
duce functional regression testing cost by test case selection ([22,
50]), test suite reduction([32, 19, 62]) and test cases prioritization([51,
25, 52, 38, 42]). Test case selection realizes this through selecting a
subset of test cases in the test suite based on test case property and
code modification information. Test suite reduction works on re-
moving redundancy in test suite. Test case prioritization orders test
case execution in a way to meet time constraints in hope to detect
fault faster.

Different from these work, our goal is to reduce performance re-
gression testing overhead via testing target prioritization. In func-
tional regression testing, work that also analyzes code modifica-
tions focuses on code coverage. But in the context of performance,
more important is information such as whether an operation is ex-
pensive or lies in critical path. The analysis we propose is specifi-
cally for assessing commits’ performance risk.

There are also practices on improving performance regression
testing efficiency mainly through hierarchical test case organiza-
tion. We differ from them in that we take a white-box approach to
prioritize test target by analyzing commit content.

Impact Analysis: There is fruitful work on software change impact
analysis techniques to compute the set of program elements that
may be affected by the change (impact set) [14, 56, 13, 47, 10,
20, 12]. They can be broadly divided into three categories: static
analysis based [14, 56, 13], dynamic execution based [40, 47, 48,
12] and history-based [63, 54].

Our proposed method is inspired by these work. The key dif-
ference is that we focus on the performance risk implication of
change, instead of the impact set. PRA assesses the risk of a code
change to introduce performance regression in addition to the im-
pact set.

Additionally, many impact analysis work focuses on function
level. But PRA needs to examine more fine grained statement level
for detailed analysis. This not only poses challenges in the analy-
sis but also on mapping from textual changes to the corresponding
programming constructs (§4.2).

Worst-Case Execution Time Analysis: Analyzing the worst case
execution time (WCET) [33, 58] of a task to be executed on a spe-
cific hardware is a necessary process for reliable real-time system
because of its stringent timing constraints. Our PRA is similar as
the static approach in WCET analysis. For example both PRA and
WCET analysis needs to use control flow information and bound
calculation to determine the worst case execution path.

However, WCET analysis mainly applies to real-time systems as
they have restricted form of programming (e.g., no recursion al-
lowed). PRA works on regular performance-critical software writ-
ten in standard C/C++ that supports generic programming con-
structs. The biggest size of tasks analyzed by WCET analysis tool
is around 50K LOC [58]. PRA can scale to millions of LOC for
regular software.

More importantly, PRA does not aim to predict the absolute per-
formance bound for the entire program. Instead, PRA calculates
the relative performance risk introduced by given code change to
reduce testing target set. The analysis is focused in code change

scopes. This makes PRA light-weight enough to fit in the perfor-
mance testing cycle. In contrast, WCET analysis needs to obtain
a safe bound as a worst-case guarantee for the entire program. It
therefore requires careful modeling of underlying architectural be-
haviors (e.g., branch prediction) and often requires user annotations
(e.g., loop bounds, flow facts), which is very expensive to perform
on a per-commit basis to be used by performance testing.

7. LIMITATIONS AND DISCUSSIONS
There are limitations in the current implementation that we are

considering for future work.
First, our PRA is designed to recommend straightforward perfor-

mance regression issues. While this makes the analysis lightweight,
the analysis may not accurately assess the risk of sophisticated per-
formance regression issues such as resource contention, caching
effect. Second, although our cost model is generic for both com-
putation and I/O, detailed modeling and profiling are needed if I/O
behavior is of particular interest. Therefore our current modeling
has limited applicability to software like OS kernel. Also our model
does not apply to networked software. Third, since for a commit
that is considered to be potentially risky, PRA knows the program
points that are risky. With the risky program points and test cases’
coverage information, we are extending the analysis to not only
select testing target but also recommend which test case may po-
tentially expose the performance issue in the risky version.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new approach, performance risk anal-

ysis (PRA), to improve performance regression testing efficiency
through testing target prioritization. It analyzes the risk of a given
code commit in introducing performance regression. To gain deep
understanding of perilous commits’ code characteristics, we con-
duct a study on 100 randomly sampled real-world performance re-
gression issues from three large popular software. Based on the
insights from the study, we propose a PRA design and implement a
tool, PerfScope. Evaluation on the studied problematic commits
shows PerfScope can successfully recommend 92% of them for
testing. We also evaluate the tool on 600 new commits that are not
studied. PerfScope significantly reduces the testing overhead by
recommending only 14-22% of the 600 commits and is still able to
cover 87-95% of the risky commits. Experiment demonstrates the
analysis is lightweight. The source code of PerfScope is released at
http://cseweb.ucsd.edu/~peh003/perfscope.
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