
ReSlice: Selective Re-Execution of Long-Retired Misspeculated Instructions
Using Forward Slicing ∗

Smruti R. Sarangi, Wei Liu, Josep Torrellas, and Yuanyuan Zhou
University of Illinois at Urbana-Champaign

{sarangi,liuwei,torrellas,yyzhou}@cs.uiuc.edu

Abstract

As more data value speculation mechanisms are being proposed to
speed-up processors, there is growing pressure on the critical proces-
sor structures that must buffer the state of the speculative instructions.
A scalable solution is to checkpoint the processor and retire specula-
tive instructions. However, in this environment, misprediction recov-
ery becomes very wasteful, as it involves discarding and re-executing
all the instructions executed since the checkpoint.

To speed-up execution in this environment, this paper presents
a novel architecture (ReSlice) that selectively re-executes only the
speculatively-retired instructions that directly depended on the mis-
predicted value, namely its Forward Slice. ReSlice buffers the (typi-
cally very few) instructions in the forward slice of the predicted value
as such instructions initially execute. Then, potentially thousands of
instructions later, ReSlice can quickly re-execute the slice if a mis-
prediction is declared, and merge its state with the program state. In
addition, this paper develops a sufficient condition for correct slice
re-execution and merge. As one possible use of ReSlice, we apply
it to recover from cross-task dependence violations in a chip multi-
processor with Thread-Level Speculation (TLS). ReSlice speeds up
SpecInt applications over aggressive TLS by up to 33%, with a geo-
metric mean of 12%. Moreover, E × D2 decreases by 20%. All this
is obtained by saving on average 61% of the task squashes through
slice re-execution. On average, a slice re-executes only 6.6 instruc-
tions, compared to the 210 that would be re-executed on a squash.

1. Introduction

With the advent of long memory and inter-processor communication
latencies, data value speculation will increasingly assume a promi-
nent role in processors. Rather than waiting for a long-latency event
to produce a value, processors can predict the value and proceed spec-
ulatively. When the value is finally generated, if a misprediction is
declared, the processor discards the speculative instructions and typ-
ically re-executes them.

Data value speculation is being considered for a wide variety of
improvements, mostly related to hiding memory or communication
latency. Following initial proposals for predicting load values from
the L1 [17, 28] or data dependences [6, 22], there has been a flurry
of new techniques that can be cast as long-latency data speculation.
They include speculating on values loaded on L2 misses [4, 15, 37],
independence of instructions following an L2 miss [31], parallelism

∗This work was supported in part by the National Science Foundation un-
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;
DARPA under grant NBCH30390004; DOE under grant B347886; and gifts
from IBM and Intel.

of threads in Thread-Level Speculation (TLS) (e.g., [11, 16, 30, 33]),
values of stale shared data [12], collision-free synchronization oper-
ations [20, 25], and ordering of accesses to shared memory [10].

As latencies continue to increase, the number of speculative in-
structions that need to be kept buffered until a prediction is veri-
fied increases as well. To reduce the resulting pressure on critical
processor structures such as the instruction window or the register
file, several recent proposals have opted for checkpointing the pro-
cessor state and retiring these speculative instructions [1, 4, 7, 8, 15,
19, 20, 24, 25, 31]. This approach is already used in TLS systems
(e.g., [11, 16, 30, 33]), and provides a scalable solution to the chal-
lenge of growing speculative state.

Unfortunately, in checkpointed systems, recovery from mispre-
diction can be very expensive. For example, consider an L2 miss
that returns a value different than speculatively used, or a TLS task
that reads a variable and much later a predecessor task updates it to
a different value, or a task executing speculatively beyond a raised
barrier that detects a data collision with another task. In these cases,
hundreds or thousands of instructions may have executed and spec-
ulatively retired since the prediction. There is no way to selectively
re-execute only the instructions that used the incorrect data. Conse-
quently, the processor rolls back to the checkpoint. The result is a
tremendous waste.

Our goal is to selectively re-execute only the speculatively-retired
instructions that depended on the mispredicted value, namely its For-
ward Slice. Since such instructions will be shown to be very few (Sec-
tion 6.3), we reduce the amount of work to be redone by a dramatic
97%! The result is faster program execution.

To support selective re-execution of long-retired misspeculated in-
structions, we need three mechanisms. First, during the initial exe-
cution of the speculative instructions, we buffer some minimal state
for potential re-execution. Second, after a misprediction, we use the
buffered state to re-execute only the slice. Finally, we need to guar-
antee that the re-execution of the slice repairs the program state.

To address these issues, this paper makes three contributions:
1. It develops a sufficient condition under which re-executing only the
slice is guaranteed to correctly repair the program. This condition is
formulated in a way that can be checked in hardware.
2. It designs a novel generic architecture (ReSlice) that is able to
selectively re-execute only the instructions in the forward slice of
a mispredicted value. These instructions were speculatively retired.
ReSlice has two components: one efficiently buffers the slice instruc-
tions as they execute; the other can quickly re-execute them with a
new value and repair the program state.
3. As one possible application of ReSlice, we use it to recover
from cross-task data dependence violations in TLS. ReSlice takes a
Chip Multiprocessor (CMP) with an aggressive TLS system running
SpecInt applications and further speeds it up by up to 33%, with a

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

������
������
������
��������������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

S 1

�
�
�
�

(a)

Rollback Point

Live−ins

R7LD R4 mem[R7]

Program
 O

rder

(Seed:R3)

Resolution Point

I1

Resolution Point

Seed Instruction

Resolution Point

6.6 Instructions

210.2 Instructions

(b)

Instruction
in Slice

LD R3 mem

ST R3 mem[R6+4] R6

Prediction Point

Slice

Assume R7=R6+4

Seed Instruction

Live−in

(c)

Instruction

Hardware Buffer

Figure 1. A forward slice: slice embedded in a task (a), experimental measures (b), and buffering it for later re-execution
(c).

geometric mean of 12%. Moreover, ReSlice decreases the E × D2

of the system by 20%. All this is accomplished by saving on average
61% of the task squashes through slice re-execution. On average, a
slice re-executes only 6.6 instructions, compared to the 210 instruc-
tions that would be re-executed on a squash.

This paper is organized as follows. Section 2 describes prior work;
Section 3 presents the condition for correct slice re-execution; Sec-
tion 4 describes ReSlice; and Sections 5 and 6 evaluate it.

2. Prior Work

To provide background, we describe prior work in the areas of data
value speculation, selective re-execution, and slicing.
Data value speculation was used in the context of load values from
the L1 [17, 28] and unknown data dependences [6, 22]. As memory
and inter-processor communication latencies have grown, specula-
tion has come to be regarded as a promising way to increase ILP and
TLP. For example, one use is to speculate on the memory values at L2
misses [4, 15, 37]. Another use is to speculate on the independence
of instructions following an L2 miss [31]. TLS (e.g. [11, 16, 30, 33])
speculates on the values of a task’s live-ins. Coherence Decou-
pling [12] speculates that a cached word invalidated by the coherence
protocol can still be used. SLE [25] and Speculative Synchroniza-
tion [20] speculate that threads can skip sychronization operations
and not suffer data collisions. Finally, [10] speculates that shared-
memory accesses can be aggressively overlapped and not violate the
perceived conservative memory model.

As latencies grow, the number of speculative instructions exe-
cuted until the prediction is verified increases. If these instructions
are buffered, they occupy size-critical structures such as the instruc-
tion window or register file. Consequently, many of the schemes de-
scribed [4, 15, 20, 25, 31], including the TLS schemes [11, 16, 30,
33], checkpoint the processor and retire speculative instructions. The
same strategy is proposed for checkpointed processors, which typi-
cally checkpoint and speculate to reduce stalls or overheads, such as
Cherry [19], Virtual ROBs [8], Runahead [24], CPR [1], and Out-of-
order commit processors [7]. In all of these proposals, a misspecula-
tion is very costly: potentially many hundreds or thousands of retired
instructions are discarded as the processor returns to the checkpoint.
Our proposal is to discard and re-execute only a tiny fraction of them.
Selective re-execution of only the dependent instructions on a mis-
speculation has been widely studied in processors where specula-
tive instructions are not retired. For superscalar processors, sev-
eral designs to recover from load misspeculation have been proposed

(e.g., [3, 14]), and implemented in processors such as the Intel Pen-
tium 4 [21] and the AMD Opteron [13]. It has been shown [3] that
dependence prediction with selective re-execution in processors with
small instruction windows can approach the performance of perfect
dependence prediction. For more parallel architectures such as the
Trace Processor [27] and TRIPS [9], selective re-execution has also
been analyzed. In these architectures, speculative instructions are not
retired. Instead, the dependence information of the speculative in-
structions is kept. This information is used to re-issue only the de-
pendent instructions. Unlike all these works, our design retires spec-
ulative instructions.
Slicing was first introduced by Weiser [34]. Software-based slicing is
frequently used for compiler analysis and debugging [35]. This paper
proposes a hardware-only solution to improve performance. Related
hardware schemes include backward-slicing schemes. Specifically,
Moshovos et al. [23] proposed a backward slicer that conceptually
walks the dataflow graph in reverse. The backward slice is used by a
helper thread to prefetch data. Other researchers have also proposed
schemes to generate prefetching slices. Chappell et al. [5] use a sim-
ilar backward-slicing mechanism to help predict branches. Note that
backward slices are generated very differently than forward slices and
are not useful for recovery.

CFP stashes an instruction that misses in the cache plus its for-
ward slice into a buffer [31]. These instructions are skipped and not
executed until the requested data returns from memory. In the mean-
time, the processor executes independent instructions. Such scheme
also relies on speculation, since it has to predict, possibly based on
unknown register values, what instructions may or may not belong to
the slice being skipped. If any such predictions are incorrect, the pro-
cessor rolls back to a previous checkpoint. In our paper, we explore
a different approach, namely continue executing using a prediction
and, if the prediction is later shown incorrect, re-execute the slice.

3. Correct Slice Re-Execution

3.1. Model of a Forward Slice

The model we use for a forward slice is shown in Figure 1(a). A
slice is embedded inside a section of code that we refer to as task. A
slice starts with an instruction (typically a load) that sets a register.
The register and instruction are called the Seed and seed instruction,
respectively. The slice is formed with subsequent instructions that
are data dependent on the seed through registers or memory locations.
For example, in Figure 1(a), the seed instruction is a load into register
R3. The instruction two positions later belongs to the slice because

ST R5 mem[0x20]

������������

������������

��������������

��������������

��������������

��������������

��������������ST R2 (R1)

R1<−0x10

(a)

#1

#2

#1

#2

LD R5 mem[0x20]#3

R1<−0x20

ST R2 (R1)

(b)

R1<−0x10

ST R2 (R1)

LD R3 mem[0x10]

#1

#2

#3

#1

#2

R1<−0x20

ST R2 (R1)

LD R5 mem[0x20]#3

Inhibiting Store

Buffered (S)I Oracular (S) I Oracular (S) I Buffered (S) Oracular (S)

(c)

LD R2 (R1)

R1<−0x10#1

#2

#1

#2

R1<−0x20

LD R2 (R1)

#3
Dangling Load Inhibiting Load

1 1 1Buffered (S)1 2 1 2 1 2

Seed Instr. Seed Instr. Seed Instr.

Figure 2. Examples of an Inhibiting store, Dangling load, and Inhibiting load. In the examples, the seed’s original value was
0x10, while the new value is 0x20.

of a dependence through register R3. That instruction is a store to
a location that is later read by a third instruction. As a result, the
latter also belongs to the slice. In our design, control dependences do
not propagate slice membership: the fact that a branch belongs to a
slice does not imply that the target and fall-through instructions also
belong to it.

A slice has slice live-ins, which are values that the slice uses with-
out first defining them. They can be the contents of registers or the
contents of memory locations. In Figure 1(a), the live-ins are the
contents of registers R6 and R7.

When a task executes, we identify three key points. The Predic-
tion Point is where the prediction for the seed value is made. The
Rollback Point is where the processor checkpoints. Sometimes, the
Rollback and Prediction points coincide — for example if we predict
the return value of a long-latency load and checkpoint at the same
time. In other cases, the Rollback point precedes the prediction. For
example, in TLS, the Rollback point is where the speculative task is
spawned, while the Prediction point is at a load that may cause a vio-
lation. Finally, the Resolution Point is when the prediction is verified
or rejected. In our examples, this is when the processor receives the
requested datum from memory, or a cross-thread dependence viola-
tion is detected in TLS. Based on the seed value, a misprediction may
be declared.

In conventional checkpointed systems, as soon as a misprediction
is declared, execution returns to the Rollback point and the whole
task is re-executed. With ReSlice, on a misprediction, the slice at
the Prediction point is re-executed, and then execution resumes at the
Resolution point.

Figure 1(b) shows the average conditions experimentally mea-
sured in the TLS system of Section 6.3 for SpecInt applications. The
distance between the Resolution point (or end of task, whichever is
earlier) and the Rollback point is 210.2 instructions, while the slice
is only 6.6 instructions (not all contiguous). Consequently, in a de-
pendence violation with misspeculation, TLS with ReSlice only re-
executes 3% of the instructions that TLS would otherwise re-execute!

3.2. Why Correct Slice Re-Execution Is Challenging

A slice re-execution is Correct only if it repairs the state of the code,
enabling the processor to resume execution at the Resolution point.
To see why correct re-execution is challenging, consider Figure 1(c).
When the task is executed, the instructions that form the dynamic
slice of the seed are collected into a hardware buffer, together with
the associated slice live-ins. Let I1 denote all the dynamic instruc-
tions executed from the Rollback to the Resolution points, and S1 the
dynamic instructions in the slice (Figure 1(c)). Let I2 and S2 be enti-
ties similar to I1 and S1 for the case in which the task executed with
the correct seed value. Since we do not have I2 or S2, we refer to
them as oracular.

When a misprediction is declared, ReSlice proceeds to re-execute
the slice with the correct seed value. Slice re-execution will be correct
only if, by feeding the new seed value to the buffered S1, we can
transform the program state generated by I1 as if I2 had executed
instead.

The main difficulty occurs because, since the new seed value in-
duces changes to the contents of registers (potentially even registers
used to generate addresses), re-executed instructions may read and
write different memory locations than before. Since memory depen-
dences propagate slice membership, the result may be that instruc-
tions that did not belong to the slice in the original run, they now do
with the correct seed, and vice-versa (formally: S2 �= S1). Unfortu-
nately, as we try to re-execute the slice, only the S1 instructions are
buffered and available! Moreover, even if S2 = S1, it may be hard
to supply the correct operand values to the buffered instructions. For
example, a re-executed load may now read from a new memory loca-
tion, and the correct value in that location may be unavailable because
it was overwritten by a later write in I1.

To identify a sufficient condition that guarantees correct slice re-
execution, we isolate the conditions that ensure that: (i) S2 = S1

and (ii) all instructions in S2 can actually read the correct operand
values. For simplicity, we limit our analysis to cases where the new
seed value does not change the control flow.

Let us first analyze what makes S2 �= S1. We consider first what
causes a new instruction to join the slice in the re-execution, and then
what causes an old one to leave it. Figure 2(a) shows why an instruc-
tion may join. A store that belongs to both the buffered slice (S1) and
the oracular slice (S2) writes to a different address as it re-executes.
In the example, the store is instruction #2, which writes to address
0x10 in S1 and 0x20 in S2. If there was an instruction in the original
run (I1) that read from the second address, that load now belongs to
S2. In the example, that load is instruction #3. Unfortunately, the
load read an incorrect value but, because the load is not buffered in
our hardware, we have no easy way to re-execute it. We call the store
that causes this problem Inhibiting Store (Appendix A presents the
formal definition). If we find an Inhibiting store, slice re-execution
fails, and we revert to the conventional recovery: roll back to the
Rollback Point (Figure 1(a)) and re-execute the task fully.

Consider now when an instruction leaves the slice. An example
is shown in Figure 2(b). Again, a store writes to a different address
as it re-executes. In the example, the store is instruction #2, which
writes to address 0x10 in S1 and 0x20 in S2. If there was a load that
was in the buffered slice (S1) because it read from the first address,
then the load is not in the oracular slice (S2). In the example, that
load is instruction #3. Consequently, this load, while buffered by our
hardware, does not belong to the correct slice. Moreover, it read an
incorrect value in S1 (an incorrectly modified location 0x10). Un-
fortunately, simply re-executing it would load the wrong value again
— we would need expensive support to re-execute the load and its

forward slice correctly. We call this load a Dangling Load (Appendix
A presents the formal definition). If we find a Dangling load, slice
re-execution fails, and we revert to conventional recovery.

Finally, even if S2 = S1, slice re-execution fails if an instruction
in the slice cannot read correct operand values. Instructions always
get correct register values, since such values are propagated via the
slice or from (unchanged) buffered slice live-ins. However, this is
not necessarily true for memory operands. An example is shown in
Figure 2(c). A load that belongs to both the buffered slice (S1) and the
oracular one (S2) loads from a different address as it re-executes. In
the example, instruction #2 loads from address 0x10 in S1 and 0x20
in S2. If there was an instruction in the original run (I1) that wrote
to the second address (instruction #3 in the example), that second
address is now polluted. Re-execution of the buffered slice causes
instruction #2 to incorrectly read the value created by #3. We call the
load that causes this problem Inhibiting Load (Appendix A presents
the formal definition). If we find an Inhibiting load, slice re-execution
fails, and we revert to conventional recovery.

3.3. Sufficient Condition for Correct Re-Execution and
Merge

Theorems 3 and 4 in Appendix A prove that, if the control flow path
in the slice re-execution is the same as in the original slice execu-
tion, and there are no Inhibiting stores, Dangling loads, or Inhibiting
loads, then: (i) S2 = S1 and (ii) S2 instructions can read their correct
operands. This is a sufficient condition for correct slice re-execution.
Note that it is still possible and acceptable that a given instruction in
the slice accesses a different address in the original slice and in its
re-execution.

After re-execution, we must merge the state generated by the
slice with the up-until-now-speculative program state. The number
of cases that can successfully be merged depends on the level of ar-
chitectural support present. For example, some merge cases may re-
quire to undo incorrect cache updates performed in S1. In our design,
we log the values overwritten by every first update issued by slice in-
structions in S1 to an address. In practice, it can be shown that the
average number of such updates per slice is between one and two.
With this support, Theorem 5 in Appendix A proves that, in the ab-
sence of Inhibiting stores, we can successfully merge as long as any
cache location that needs to be restored to a value before the slice be-
cause it was incorrectly updated by S1, received at most one update
in S1.

In the following, we present ReSlice, an architecture that is able
to correctly buffer, re-execute and merge a slice as long as: (i) branch
outcomes in the slice do not change, (ii) there are no Inhibiting stores,
Dangling loads, or Inhibiting loads, and (iii) cache locations that need
to be restored to a state before the slice, received at most one update in
the slice. If this sufficient condition does not hold, recovery from mis-
prediction involves rolling back to the checkpoint and re-executing
the whole task from scratch.

4. Architecture for Collecting, Re-Executing, and
Merging Slices

4.1. Overview

To selectively re-execute long-retired, misspeculated instructions,
ReSlice needs to support two actions: (i) as the task initially exe-
cutes, ReSlice buffers the forward slice of the seed and, (ii) later, if

needed, it re-executes the slice and merges the resulting state with the
program state.

For the first action, ReSlice must be able to detect the seed in-
struction. The latter could be detected at different locations in the
pipeline. For simplicity, in this paper, we assume that we detect it
no later than rename — e.g., at instruction fetch, when we see a PC
that has historically corresponded to a very costly operation (e.g., an
L2-missing load or a load that resulted in a TLS violation).

After the seed is detected, its forward slice is collected. For this,
ReSlice follows register and memory dependences as instructions ex-
ecute, and buffers the instructions of the slice in the Slice Buffer. De-
pendences are followed by tagging physical registers and buffers with
a SliceTag, which indicates if they hold data belonging to the slice.
For data generated by the slice that are stored in the cache, instead of
tagging cache lines, ReSlice keeps the addresses with their SliceTags
in a small buffer called Tag Cache. Finally, ReSlice also buffers the
live-in operands of the slice; they are needed to support re-execution
and would not be otherwise available at re-execution time.

The second action, slice re-execution, is triggered when the cor-
rect seed value becomes available and differs from the predicted one.
At this point, task execution is suspended. Then, the buffered slice
instructions and their live-ins are fetched and re-executed in the Re-
Execution Unit. During re-execution, ReSlice checks the condition
for correct re-execution described in Section 3.3. If the condition is
met then, after re-execution completes, ReSlice merges the state gen-
erated by the slice with the program state, and the task is resumed
from the Resolution Point. Otherwise, the task is rolled back to the
Rollback Point (Figure 1(a)).

ReSlice may need to buffer multiple, possibly overlapping slices
per task, which result from different seeds. Consequently, a SliceTag
is organized as a bit vector, where bit i is set if the corresponding
datum or instruction belongs to slice i. If the datum or instruction
belongs to multiple slices, multiple bits in the SliceTag are set.

Figure 3 shows a flowchart of the actions in ReSlice, while
Figure 4 shows the main components of ReSlice. The challenges
presented to ReSlice are: (i) efficient slice collection, (ii) fast re-
execution and correctness check, (iii) correct merge of the slice state,
and (iv) support for overlapping slices. The following subsections
describe our solution.

Compare the actual and
predicted value of the seed

Timeline

1) Fill up the Slice Buffer

2) Record SliceTag of memory

Slice Collection
Seed detection

Correct prediction Misprediction

Slice Re−Execution

1) Read the slice
from the Slice Buffer

2) Execute the slice
3) Check for the

correctness condition

1) Merge register state
2) Merge memory state

State Merging

Correct

Squash Task

In
co

rr
ec

t

Rollback

Prediction
Point

Point

Resolution
Point

Processor
Stalled

Cache
system updates in the Tag

Figure 3. Flowchart of the actions in ReSlice.

CPU

Slice Buffer
(Details in Figure 6)

Info

Address of Memory
System Accesses Slice Info

Slice

Re−Execution UnitTag Cache

Figure 4. Main components of ReSlice.

4.2. Slice Collection

During slice collection, ReSlice buffers several pieces of informa-
tion. First, to be able to re-execute the slice, it buffers the slice in-
structions and the slice live-ins. Secondly, to be able to check the
condition for correct slice re-execution later, it records the outcomes
of the branches in the slice and the memory addresses accessed in the
slice. Finally, it also needs to buffer the few memory system values
that are overwritten by the slice. We will see that these values may be
needed to correctly merge the slice state with the program state.

In the following, we describe the key times for slice collection,
namely when a seed is detected, an instruction reads operands, and
an instruction retires.

4.2.1. Seed Detection

ReSlice uses a high-coverage predictor that can predict seed instruc-
tions at or before rename — for example, at instruction fetch based
on their PC. Once a seed instruction is detected, it is marked as such.
When it is renamed, the processor checkpoints the registers, and
ReSlice sets the instruction’s SliceTag to a currently-unused slice ID.
A slice ID has as many bits as the number of concurrently-supported
slices, and only one bit set.

4.2.2. Operand Read

At this time, ReSlice generates two pieces of information: (i) which
slice(s) this instruction belongs to, and (ii) which of its two operands
are live-ins of which slice(s). To obtain this information, ReSlice
reads the SliceTags of its two operands. SliceTags are stored beside
the register file, load/store queue and, for operands in the cache, in the
Tag Cache. The Tag Cache is a set-associative structure with about 32
entries. It is so small because it can be shown that each slice updates
on average between one and two memory locations.

To determine which slice(s) this instruction belongs to, ReSlice
logically ORs together the two source operands’ SliceTags (Fig-
ure 5(a)). If the instruction is a seed, its SliceTag was set to a slice
ID. In this case, ReSlice also ORs-in the SliceTag of the instruction,
since the instruction also belongs to such slice. In all cases, the re-
sult of this OR operation is stored in the SliceTags of the destination
operand and of the instruction (Figure 5(a)).

If the result of the OR is zero, no further action is taken because
the instruction belongs to no slice. Otherwise, ReSlice needs to de-
termine if any of the two source operands is a slice live-in and, if so,
of which slice. This is done as follows. The left source operand is
a live-in for all the slices that are in the SliceTag of the right source
operand and not in the SliceTag of the left source operand. This can
be computed with a logical NOT and AND operation (Figure 5(b)).
The result of this operation is a mask that identifies the slices for
which the left source operand is a slice live-in. Similar logic is used
for the right source operand.

Mask
Live−in

Mask
Live−in

If instruction
is a seed

SliceTag SliceTag

SliceTagSliceTag

SliceTag

Operand Operand

Destination
Operand

(a)

Instruction

Right SourceLeft Source

SliceTagSliceTag

Operand
Left Source Right Source

Operand

Left Source
Operand

Right Source
Operand

(b)

Instruction

Figure 5. Logic used to determine slice membership of instruc-
tions and destination operands (a), and slice live-in member-
ship of source operands (b).

4.2.3. Instruction Retirement

The ReSlice state of an instruction is buffered together with the rest
of the temporary instruction state until the instruction commits. If
the instruction is squashed due to a branch misprediction, its ReSlice
state is discarded too. When the instruction retires, its ReSlice state
is finally stored in the Slice Buffer and Tag Cache.

The Slice Buffer is shown in Figure 6. It contains several Slice
Descriptors (SDs), each of which buffers one slice with instructions
in program order. As a result, multiple slices can be buffered con-
currently. Each SD entry contains information for one instruction:
a pointer (SD.IB) to the decoded instruction in the Instruction Buffer
(IB) and, if one of the instruction’s source operands is a live-in for this
slice, a pointer (SD.SLIF) to the operand’s value in the Slice Live-In
File (SLIF). In addition, each SD entry has three bits. One indicates if
the instruction is a taken branch; the other two indicate which source
operand (if any) is stored in the SLIF. For a given instruction in a
given slice, at most one of its two source operands can be a slice
live-in. This is because at least one of the source operands must be
produced by another instruction in the same slice — thereby passing-
on slice membership. Note that since multiple slices can share an
instruction, multiple SDs may point to the same IB or SLIF entry.

...

... ...
SD.SLIF SD.IB

...

...

Instruction Buffer (IB)Slice Live−In File (SLIF)

Slice Buffer

Slice Descriptors (SDs)

Taken Branch
Right Op.
Left Op.

Figure 6. Structure of the Slice Buffer.

The IB stores the instructions of all the buffered slices in decoded
form and in program order. We use a RISC ISA, where ALU, store,
and branch instructions have two registers as source operands, and
loads have one register and one memory location as source operands.
Indirect branches are unsupported and abort slice buffering.

When an instruction retires, the Slice Buffer is updated as follows.
If the instruction is a seed, a new SD is allocated. If the instruction’s
SliceTag shows that it belongs to one or more slices, the instruction
is buffered in the corresponding SD(s). This is done by first saving
the retiring instruction in the IB. Then, the live-in masks of its source
operands (Figure 5(b)) are checked to see if any of the operands is
a live-in of any slice. If so, ReSlice saves the corresponding source

operand(s) in the SLIF. Then, for each of the slices to which the in-
struction belongs, ReSlice fills one SD entry as follows: (i) the SD.IB
field is set to point to the instruction in the IB, and (ii) the SD.SLIF
field is set to point to the slice live-in for this instruction (if any) in
the SLIF. Recall that, for each slice, an instruction can at most have a
single slice live-in. ReSlice also sets the SD entry’s LeftOp, RightOp,
and TakenBranch bits (Figure 6) appropriately.

When the retiring instruction being copied to the IB is a load or a
store, ReSlice also stores the address being read/written in the subse-
quent IB entry. This simplifies slice re-execution (Section 4.3).

Finally, if the slice instruction is a store, two operations are per-
formed as the datum is speculatively written to the cache1. First, the
datum’s SliceTag is saved in the Tag Cache. Secondly, if this is the
first update to the location in the slice, the contents of the location
before the update are saved in a small Undo Log buffer. The Undo
Log helps state merging (Section 4.4).

4.3. Slice Re-Execution

After a misprediction is detected (Figure 3), ReSlice initiates re-
covery. The processor’s pipeline is flushed and stalled. The Re-
Execution Unit (REU) takes over. Given that a slice re-execution
involves, on average, only 6.6 instructions (Section 6.3), there are
several options for the REU design. It can be a simple core with a
small register file or it can be a piece of firmware that uses the re-
sources of the processor — this is implementation dependent.

The REU starts with a clean register file and re-executes a slice
by processing, in order, the entries in the target SD. From an SD
entry, it follows the pointer to fetch the decoded instruction from the
IB and, if either the LeftOp or the RightOp bit is set, a slice live-in
from the SLIF. As it executes, the REU may access memory system
locations, although the cache is not modified until the re-execution
process completes.

During re-execution, the REU checks for the sufficient condition
for correct slice re-execution (Section 3.3): unchanged branch direc-
tions and the absence of Dangling loads, Inhibiting loads, and Inhibit-
ing stores. Branch directions are checked against the TakenBranch bit
in the SD. The other requirements are checked by comparing, for each
load and store in the slice, the address accessed in the re-execution
and the one accessed in the initial run. Recall that the latter is stored
in the IB after the entry for the load or store.

More specifically, on a store, the REU compares the new and old
addresses. If they are the same, the current store is not Inhibiting.
Otherwise, the REU checks if the new address was accessed in the
initial run of the task (I1 in Section 3.2). This is done by checking
if the referenced word is in the cache with the Speculative Read or
Write bits set. These bits were set for all the words read or written,
respectively, in the initial, speculative run of the task, as is typical in
TLS systems. If any of these two bits is set, this is an Inhibiting store
(see Section 3.2 and its formal definition in Appendix A).

On a load, the REU compares the new and old addresses. If they
are different, the REU checks if the new address was written in the
initial run (again, by checking the Speculative Write bit in the cache).
If so, this is an Inhibiting load (Section 3.2). If, instead, the old and
new addresses read are the same, the REU checks for a Dangling
load. For that, the REU searches backwards the stores in the original
execution of the slice (S1) — recall that it has just read each of them.

1Like in many TLS systems, we assume that the cache can store the data
read or written by the speculative task, and that it marks them with Speculative
Read and Write bits. Other designs are possible.

If it finds a matching address, it means that this particular store in-
struction produced the data for the load in the initial run. If this same
store in the new run (S2) generates a different address, then the load
we are processing is a Dangling load (Section 3.2).

In practice, these checks are very fast. Indeed, Section 6.1 shows
that, even if we do not restrict the types of slices that we support, the
average re-executed slice reads only one word and has a two-word
update footprint.

4.4. State Merging

After the slice is proven to have re-executed correctly, the REU
merges the register and memory state that it has generated with the
main program state. Consider registers first. Let us call R1 the set of
architectural registers defined in the initial execution S1 of the slice,
and R2 the set defined in the re-execution S2. Since a correct slice
re-execution involves executing the same instructions as in the origi-
nal execution, R1 is equal to R2. To perform the register merge, the
REU takes its R2 registers and, using the rename table of the pro-
cessor stalled at the Resolution Point, accesses their corresponding
current physical registers. Then, it checks for liveness of the register
updates performed in the initial slice execution, i.e., if in the SliceTag
of these physical registers, the bit corresponding to the re-executed
slice is still set. For those where it is set, the physical register in the
processor is updated with the value in the REU.

Consider now memory state. Let us call M1 the set of memory
locations defined in the initial slice execution and M2 those defined
in the re-execution. The addresses of M1 and M2 are collected by
the REU as it re-executes a slice (Section 4.3). To create the correct
memory state at the Resolution Point, we require: (i) for locations
that are in M1 and not in M2, potentially undo the initial execution’s
update, and (ii) for locations that are in M2, potentially perform the
re-execution’s update.

To perform action (i), the REU takes each address in M1 that is
not in M2 and checks its SliceTag in the Tag Cache. If the bit cor-
responding to the slice is still set, then the update is still alive. To
undo it, the REU takes the corresponding value from the Undo Log
and writes it to the cache2. To perform action (ii), the REU considers
each address in M2 in turn. The REU updates the cache with the new
update only if the update is live at the Resolution Point. The latter is
true in two cases. First, if the Tag Cache contains an entry for this ad-
dress and, in its SliceTag, the bit corresponding to this slice is still set.
Second, if the Tag Cache does not contain an entry for this address.

Note that, in TLS, the cache updates performed during state merg-
ing may prompt the coherence protocol to propagate invalidations to
other caches, and possibly cause the re-execution of slices in succes-
sor speculative tasks.

4.5. Supporting Overlapping Slices

The algorithm described supports re-executing a given slice multiple
times. This is useful in TLS, where the location read by a seed in-
struction may receive multiple updates; after each update to a new
value, ReSlice runs the algorithm described. It is also useful when
slices overlap, i.e., they share instructions. Given two overlapping
slices, when we detect the first misprediction of a seed value (say,

2As proven in Theorem 5 of Appendix A, this undo will repair the state un-
less this address had already been undone before, or the address was updated
multiple times in the initial slice execution. In these rare cases, re-execution
is aborted.

seed i), we re-execute the slice (slice i) as usual. However, when we
later detect the misprediction of the other seed value (say, seed j), we
have to re-execute both slices (slices i and j) together. The reason is
that the first slice re-execution may have changed the live-ins for the
second slice and, therefore, rendered the live-in values of the second
slice in the SLIF stale.

As an example, Figure 7(a) shows code with two overlapping
slices: one with instructions 1-3-4, and the other with 2-3-4. Fig-
ure 7(b) shows that each slice has its own SD and one live-in in the
SLIF, namely the contents of R3 for the first slice and the contents of
R4 for the second one. If Address2 receives a new value, slice 2-3-
4 re-executes, using as live-in the value of R4 saved in the SLIF. If,
later, Address1 receives a new value, re-executing only slice 1-3-4 is
incorrect: we would use as live-in the value of R3 in the SLIF, which
is stale. Instead, we need to re-execute both slices concurrently. Next,
we show how ReSlice detects and handles overlap.

#1

#2

#3

#4

#2 LD R3 Address2

(a)

#1 LD R4 Address1

#4 ST R1

#3 ADD R1 R3 R4

Instructions SLIF

[R3]

[R4]

(b)

IB
SD1

SD2

Figure 7. Supporting overlapping slices.

4.5.1. Detecting Overlap

Slice overlap can occur at two different times. Typically, it is de-
tected as the slices are collected. In the example of Figure 7(a), when
instruction 3 retires, its SliceTag shows that it belongs to two slices.
Consequently, the instruction is buffered in two SDs. These SDs are
marked with an Overlap bit.

It is also possible that two slices that did not overlap as they were
collected end up overlapping when one of them re-executes. This can
occur when a re-executing slice accesses different memory locations
than in its initial execution, and these locations overlap with another
slice. This case, however, is uninteresting because it results in a failed
re-execution according to our condition in Section 3.3. The intuitive
reason is that the re-execution ends up adding additional instructions
to one slice and, therefore, S1 �= S2. A proof can be given in terms
of Inhibiting stores and Dangling loads.

4.5.2. Handling Overlap

To handle overlap, ReSlice supports the concurrent execution of mul-
tiple slices. When a slice that has the Overlap bit set is to be re-
executed, ReSlice also triggers the concurrent execution of all the
other slices in the task that have the Overlap bit set and have already
re-executed.

To support the concurrent execution of multiple slices, ReSlice
has two features. First, it enforces the in-order execution of the in-
structions of the combined slice. Specifically, as it examines SD1
and SD2 in Figure 7(b) top down, it always selects the pointer with
the smallest offset as the next instruction to execute.

Second, when ReSlice is about to execute an instruction that is
shared by multiple re-executing slices, it only takes a live-in from
the SLIF if all the re-executing slices “agree” (i.e., all SDs point to
the same SLIF entry). Otherwise, the REU uses instead the current
value in its register file. For example, for instruction 3 in Figure 7(a),

ReSlice reads R3 and R4 from the REU register file because neither
is a live-in common to both slices. Indeed, as shown in Figure 7(b),
the second entry in each SD points to a different SLIF entry. ReSlice
would take the same action if one of the two pointers were nil.

Theorem 6 in Appendix A proves that, by combining the slices in
this way, the condition for correct re-execution is the same as for a
single slice (Section 3.3). For simplicity, ReSlice supports the con-
current execution of at most three slices.

Section 6.3 compares ReSlice to a scheme that does not support
the concurrent execution of multiple slices (NoConcurrent). In such
scheme, when a slice with the Overlap bit set needs re-execution,
if there is another slice in the task with the Overlap bit set that has
already re-executed, we squash the task.

5. Evaluation Methodology

As one application of ReSlice, we use it to recover from cross-task de-
pendence violations in a TLS CMP. For this, we use a TLS compiler
that produces a binary with tasks [18, 26]. We also use an execution-
driven cycle-accurate simulator with detailed models of out-of-order
superscalars, a memory subsystem, and a TLS protocol. It includes
the models of dynamic power from Wattch [2] and Cacti [29], and
static power from HotLeakage [36].

The baseline architecture modeled is a 4-core CMP with TLS sup-
port (TLS). We are interested in the impact of adding ReSlice support
(TLS+ReSlice). As a reference, we also consider a non-TLS, single-
superscalar chip (Serial).

The parameters of the architectures are shown in Table 1. We
model 3-issue out-of-order cores. In TLS, each core has a private
L1 that buffers speculative state. The TLS cache coherence protocol
is similar to [16]. To account for any complexity that TLS adds to
the L1, we set its access time to 3 cycles. The L2 is shared and
does not store speculative data. Each processor also has a cross-task
dependence and value predictor (Section 5.1).

TLS+ReSlice extends TLS with the ReSlice parameters shown in
the rightmost column of Table 1. In particular, ReSlice can buffer up
to 16 slices at a time of 16 instructions each. The ReSlice hardware
adds up to about 2.4 Kbytes per core, about 512 bytes in the predictor
chip wide, and the REU. The REU is a tiny in-order core.

Serial has one core, L1, and L2 in a chip. We do not change the
cache sizes to avoid affecting the cycle time. However, since TLS is
not supported, we reduce the L1 access time by one cycle to 2.

These architectures run the SpecInt 2000 codes with the Ref input
data set. The exceptions are eon (written in C++), gcc, and perlbmk,
which our TLS compiler does not fully support. Serial runs unmod-
ified, uninstrumented binaries, while TLS and TLS+ReSlice run the
binaries generated by our TLS compiler. In our simulations, we skip
the initialization (1-6 billion instructions), and then execute the appli-
cations by about 0.75-1.50 billion Serial instructions.

5.1. Dependence and Value Predictor

Both TLS and TLS+ReSlice have a cross-task dependence and value
predictor like the one in [32]. The dependence predictor is built with a
per-core 4-entry CAM called Temporary Dependence Buffer (TDB),
and a 4-way 512-entry shared (but distributed) global Dependence
and Value Predictor (DVP). The DVP is PC-indexed and each entry
has a 2 bit confidence count.

When a dependence violation occurs, the address that caused it is
inserted in the TDB. As the squashed consumer task is immediately

Processor Cache D-L1 I-L1 L2 ReSlice Parameters

Frequency: 5.0 GHz @ 70 nm Size: 16KB 16KB 1MB #Units #Entries Width
Fetch/issue/comm width: 6/3/3 RT: 3 cyc 2 cyc 10 cyc (Bits)
I-window/ROB size: 68/126 (2 cyc in no TLS) IB 1 160 40
Int/FP registers: 90/68 Assoc: 4-way 2-way 8-way SD 16 16 18
LdSt/Int/FP units: 1/2/1 Line size: 64B 64B 64B SLIF 1 80 32
Ld/St queue entries: 48/42 Pend ld/st: 16 - 64 Tag Cache 1 32 48
Branch penalty: 13 cyc (min) DVP: 512 entries, 4-way assoc Undo Log 1 32 80
BTB: 2K entries, 2-way assoc. Confidence bits: 2 (+2 to predict buffering in ReSlice)
Branch predictor (spec. update): Bus & Memory: DDR-2 REU (in-order core)

bimodal size: 16K entries Bus frequency: 533MHz; Bus width: 128bit Registers: 16
gshare-11 size: 16K entries DRAM bandwidth: 8.528GB/s; memory RT: 98ns

Table 1. Parameters of the architectures modeled. In the table, DVP and RT stand for Dependence and Value Predictor, and
minimum Round-Trip time from the processor, respectively. Cycle counts are in processor cycles.

#Insts #Branches #Insts #Insts #Insts #Live Ins Update Footprint #Slices %Tasks with Buffering
App. per per Seed to Roll to per per Slice per Slice per Overlapping Predictor

Slice Slice End End Task Reg Mem Reg Mem Task Slices Coverage

bzip2 3.9 0.05 138.0 185.9 983.6 1.90 0.04 1.12 0.81 1.20 0.4 0.98
crafty 8.0 0.97 290.4 382.0 913.7 4.66 0.25 2.31 1.65 1.59 14.7 0.88
gap 27.9 2.20 193.7 251.6 1755.2 8.33 1.92 3.64 4.16 3.56 24.0 0.65
gzip 4.9 0.13 31.5 118.4 661.4 1.91 0.01 1.24 1.35 1.27 15.0 0.97
mcf 20.1 4.59 33.1 58.9 53.8 5.97 6.43 4.73 3.06 1.01 0.0 0.99

parser 10.5 0.44 135.2 232.1 303.8 5.64 0.31 2.18 2.23 2.08 34.2 0.95
twolf 10.0 1.08 98.8 194.6 406.8 6.20 0.00 2.40 1.27 1.37 18.3 0.95
vortex 6.5 0.13 200.9 295.4 1846.7 5.03 0.03 1.89 2.42 1.00 0.0 0.60

vpr 1.8 0.03 175.3 362.1 453.5 0.57 0.03 0.15 0.40 1.47 28.0 0.99

Avg. 10.4 1.07 144.1 231.2 819.8 4.47 1.00 2.18 1.93 1.62 15.0 0.89

Table 2. Characterizing the slices that are re-executed. The data assumes ReSlice structures of unlimited size.

re-executed, its load addresses are checked against the TDB. When
there is a match, the PC of the load is inserted into the DVP, and its
confidence is set to the maximum value. The assumption is that this
PC is likely to be involved in future dependences. At 100K cycle
intervals, the counters are decremented; if one goes below zero, it is
invalidated.

The DVP includes a value predictor that uses a combination of
hardware and software to provide a value when a dependence is pre-
dicted [32]. It is a hybrid predictor that combines a last-value predic-
tor and an incremental predictor, with confidence counters to select
between the two. If the PC of a load hits a valid DVP entry, the load
uses the predicted value.

In TLS+ReSlice, to predict when to buffer a slice, we use the same
DVP but extend it with two additional bits per entry to give it higher
coverage. This is because coverage is important for buffering. Cov-
erage is the fraction of violations that, thanks to the predictor, find
the corresponding slice buffered. Using 4 bits per entry gives us an
average coverage of 89% (Section 6.1), at a cost of a modest increase
in size (2 bits per entry), management overhead, and energy con-
sumption. With this support, if a load hits a valid DVP entry, the
load is marked as a seed and slice buffering begins. If, in addition,
the confidence is high enough to predict a dependence (the two most
significant bits in the DVP entry are both set), the predicted value is
used; otherwise, the current value is used. This gives TLS+ReSlice
the same accuracy of value prediction as in plain TLS, and at the same
time high buffering coverage.

6. Evaluation

In this section, we first characterize forward slices, then assess
ReSlice’s impact on performance and energy, and finally analyze var-
ious ReSlice architectural parameters.

6.1. Characterizing Forward Slices

For this section only, we assume that the ReSlice structures of Fig-
ures 4 and 6 have unlimited size. Table 2 characterizes the forward
slices of loads that cause violations — namely, the slices that are re-
executed. We observe that, even with unlimited resources, the slices
are small, containing 10.4 dynamic instructions per slice on average
(Column 2). Secondly, the number of branches per slice is just 1.07
on average (Column 3). This data matches the observation in [31] that
only around 10% of the instructions in a slice are branches. Columns
4 and 5 show the distance from the seed to the end, and from the
Rollback Point to the end, respectively. The end point is either when
the seed value becomes available, or when the task ends, whichever
is earlier. The average distance between the rollback and the end
points is 231.2 instructions, which is 22 times larger than the slice
size. Hence, if we can re-execute slices correctly, we can eliminate
substantial wasted work. Column 6 shows the average size of com-
mitted tasks3.

Columns 7-8 and 9-10 show the average number of slice live-ins
and average update footprint size, respectively, organized into register
and memory variables. Note that live-ins for the seed instruction are
not included. On average, these slices have about four registers and
one memory location as live-ins, and two registers and two memory
locations as update footprint. Columns 11 and 12 focus on the tasks
that have slices. These tasks have on average 1.62 slices. Moreover,
on average 15% of these tasks have overlapping slices. This data mo-
tivates supporting overlapping slices per task. Finally, the last column
shows the buffering coverage of the DVP. We can see that, other than
in gap and vortex, coverage is very high. The average coverage across
all programs is 0.89.

3Note that, in mcf, the average size of the committed tasks is smaller than
the average distance between rollback and end for the tasks with violations.

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

S
pe

ed
up

0

0.2

0.4

0.6

0.8

1

1.2

1.4
TLS+ReSlice
TLS
Serial

Figure 8. Speedup of TLS+ReSlice over TLS.

Figure 9 characterizes slice re-executions. A slice re-execution
can be Successful or Failed. A successful re-execution is one that sat-
isfies the sufficient condition of Section 3.3. Successful re-executions
are divided into two classes, based on whether or not all the loads and
stores in the re-execution access the same addresses as in the initial
execution. Failed slices are classified according to the first instruction
that causes a failure: a different branch outcome, a Dangling load, an
Inhibiting load, or an Inhibiting store.

 0

 20

 40

 60

 80

 100

bzip2 crafty gap gzip mcf parser twolf vortex vpr A.Mean

S
lic

e
R

e-
ex

ec
ut

io
ns

 (
%

)

Successful-SameAddr
Successful-DiffAddr

Failed-InhibitingStore

Failed-DanglingLoad
Failed-InhibitingLoad

Failed-DiffBr

Figure 9. Characterizing slice re-executions.

As shown in Figure 9, most re-executions are successful. On av-
erage, 76% of the re-executions are successful. Of them, slightly
more access the same memory locations as before (44% of all re-
executions) than not (32% of all re-executions). This data justifies
using a model in Section 3.3 that tries to salvage re-executions that
access different addresses than the initial execution. We also observe
that the major reason why re-executions fail is control flow changes.

A task with slices can complete without squash only if all re-
executions of its slices are successful. Figure 10 considers all tasks
with slice re-executions and groups the tasks depending on how many
slice re-executions they have (1, 2, 3, or more). Then, tasks are clas-
sified into Salvaged (all re-executions succeed) or Squashed (at least
one fails). To see the results better, consider the average bars in the
figure. We see that about 20% of these tasks have two or more re-
executions. Moreover, if we add up all the black sections of the
bars, we see that about 70% of the tasks avoid squashes by always
re-executing slices successfully. This is an encouraging result.

6.2. Performance and Energy Impact

To evaluate ReSlice, we assess its impact on performance and en-
ergy. We now use the limited resources of Table 1. Figure 8 shows

 0

 20

 40

 60

 80

 100

1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3 1 2 3>3

N
um

be
r

of
 T

as
ks

 (
%

)

Salvaged Task
Squashed Task

A.Meanvprvortextwolfparsermcfgzipgapcraftybzip2

Figure 10. Tasks with slice re-executions. The numbers below the
bars are the number of slice re-executions per task.

the speedups of TLS+ReSlice over TLS. As a reference, we also show
Serial. The figure shows that TLS+ReSlice outperforms TLS in all
applications. The speedups are often significant; they have a geo-
metric mean of 1.12, and reach up to 1.33. Note also that our TLS
architecture is highly optimized. It is on average 29% faster than Se-
rial for these SpecInt codes (not just loops). This number compares
favorably to previously published numbers. Overall, therefore, our
ReSlice support builds on top of an aggressive TLS system to deliver
a total average speedup of 45% over Serial.

To understand these results, we break down the number of cycles
napp taken by the execution of an application as follows:

napp =

(
napp∑ncores

i=1 ni

)
︸ ︷︷ ︸

1
fbusy

×
(∑ncores

i=1 ni∑ncores
i=1 Ii

)
︸ ︷︷ ︸

1
IP C

×
(∑ncores

i=1 Ii

Ireq

)
︸ ︷︷ ︸

finst

×Ireq

=
finst

fbusy × IPC
× Ireq

In this formula, ni is the number of cycles during which core i is
busy. Ii is the number of instructions retired by core i, including those
of squashed tasks and re-executed slices. Ireq is the total number of
instructions retired in the program assuming no task squashes or slice
re-executions; it is the same for TLS and TLS+ReSlice. We can then
re-write the formula using three factors: the average number of busy
CPUs (fbusy), the average IPC of the cores (IPC), and the ratio of
retired to required(Ireq) instructions (finst).

As we move from TLS to TLS+ReSlice, these three factors change
(Table 3). To see why, recall that ReSlice’s goal is to eliminate
squashes. Columns 2-3 of Table 3 show the number of tasks squashes
per task commit in TLS and TLS+ReSlice. Since the number of task

commits does not change, we clearly see the impact of ReSlice: on
average, it reduces the number of squashes per commit by 61%, from
0.80 to 0.31. The reduction occurs across all the applications, and is
very significant for bzip2, gap, and vpr.

Task
App. Squashes finst fbusy IPC

per Commit
TLS T+R TLS T+R TLS T+R TLS T+R

bzip2 1.34 0.01 1.26 1.13 1.65 1.60 1.23 1.22
crafty 0.75 0.22 1.29 1.16 1.72 2.01 1.46 1.35
gap 2.99 1.98 1.69 1.51 1.99 1.97 1.21 1.18
gzip 0.08 0.04 1.01 1.12 1.20 1.81 1.21 1.08
mcf 0.19 0.14 1.04 1.04 2.88 2.91 0.49 0.49
parser 0.23 0.07 1.34 1.28 2.27 2.56 0.83 0.83
twolf 0.22 0.06 1.07 1.01 1.61 1.60 0.45 0.43
vortex 0.29 0.22 1.07 1.13 1.34 1.53 1.39 1.31
vpr 1.12 0.02 1.52 1.06 2.31 2.40 1.08 0.96
Avg. 0.80 0.31 1.25 1.16 1.89 2.04 1.04 0.98

Table 3. Characterizing the run-time impact of ReSlice. T+R
represents TLS+ReSlice.

This reduction in squashes helps in two ways: (i) it reduces the
number of instructions executed by the processors and (ii) it exposes
more parallelism, as the serializing operation of squashing a task and
all its successors, and gradually re-spawning them occurs less fre-
quently.

The reduction in instructions can be seen in Columns 4-5 of Ta-
ble 3, which show finst. On average, ReSlice reduces finst from
1.25 to 1.16. As shown in the formula above, this reduction directly
reduces the number of cycles taken by the application. There are a
few applications where finst remains constant or increases slightly.
These applications (gzip, mcf, and vortex), are those with the smallest
reduction in squashes (Columns 2-3). In these applications, it some-
times saves instructions to squash a task early-on with TLS rather than
to postpone the squash with TLS+ReSlice. Indeed, an early squash
may avoid later violations in the task. With TLS+ReSlice, this early
squash is avoided, but new violations that cannot be fixed with re-
execution appear later on.

The second benefit of squash reduction, namely exposing more
parallelism, can be seen in Columns 6-7 of Table 3. The data shows
that, on average, ReSlice increases fbusy from 1.89 to 2.04.

Finally, ReSlice induces a slight reduction in the average IPC .
This can be seen in Columns 8-9. The main reason is the higher
contention for chip resources induced by TLS+ReSlice’s higher par-
allelism. Overall, the reasons for TLS+ReSlice’s speedups are a lower
finst and a higher fbusy , which offset the small losses in IPC .

Next, we examine the energy consumption and the E × D2 of
ReSlice. ReSlice adds new hardware structures that consume addi-
tional energy. On the other hand, it reduces the total number of in-
structions and squashes, and saves time.

Figure 11 compares the energy consumption in TLS+ReSlice and
TLS, normalized to TLS. The TLS+ReSlice bars are broken down into
non-ReSlice structures (Base), and ReSlice structures for slice log-
ging, dependence prediction, and slice re-execution. We see that,
on average, the new structures add about 7% to the original energy
consumption, while the instruction reduction saves 5% of the origi-
nal energy. Overall, ReSlice adds a negligible 2% energy overhead.
Across applications, the bars are loosely correlated with finst (Ta-
ble 3). For example, in gzip, TLS+ReSlice consumes significantly
more than TLS because it executes more instructions, while the oppo-
site occurs in vpr.

bzip2 crafty gap gzip mcf parser twolf vortex vpr A.Mean

N
or

m
al

iz
ed

 E
ne

rg
y

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

A A A A A A A A A AB B B B B B B B B B

Base Logging Pred. Re−exec

A: B:TLS TLS+ReSlice

Figure 11. Comparing the energy consumed.

Figure 12 compares E × D2 for TLS+ReSlice and TLS. We see
that TLS+ReSlice reduces E × D2 in 6 out of 9 applications. The
geometric mean reduction is 20%.

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

N
or

m
al

iz
ed

 E
*D

*D
0

0.2

0.4

0.6

0.8

1

1.2

TLS TLS+ReSlice

Figure 12. Comparing Energy × Delay2.

6.3. Architectural Analysis

Structure Utilization. Table 4 shows the utilization of the ReSlice
structures. In the table, utilization numbers are computed as follows.
For each successfully committing task that has at least buffered one
slice (buffering task), we measure the number of entries that the task
has used in each ReSlice structure. Then, we average these numbers
across all buffering tasks.

From Columns 2 and 3, we see that, on average, a buffering task
buffers 9.7 slices, where each slice has 6.6 instructions. Note that
this average slice size is smaller than the average slice size shown
in Table 2, which was 10.4 instructions. The reason is that Table 2
assumed unlimited resources. In Table 4, slices over 16 instructions
are discarded.

Column 4 shows that, on average, the distance between the roll-
back and end points is 210.2 instructions. Consequently, ReSlice on
average re-executes only about 3.1% of these instructions! The rest
of the table shows the utilization of IB and SLIF. Note that IB con-
tains both instructions and addresses. The NoShare column shows
the number of IB entries used if sharing of entries between slices was

#Insts # IB Entries
App. SDs Inst./ Roll to Total No- SLIF

SD End Share Entr.

bzip2 11.4 6.4 189.5 91.8 99.7 45.3
crafty 15.3 7.2 396.8 126.9 145.7 76.0
gap 14.7 6.0 189.7 120.9 131.4 42.2
gzip 11.5 7.6 120.8 95.9 114.5 43.3
mcf 4.0 12.0 78.1 72.8 73.3 18.9
parser 8.8 5.7 206.4 66.0 77.3 31.6
twolf 10.6 4.7 161.9 57.8 68.1 31.5
vortex 5.0 3.2 317.8 24.7 25.0 10.6
vpr 6.4 6.4 230.6 47.8 47.9 22.4
A.Mean 9.7 6.6 210.2 78.3 87.0 35.8

Table 4. Utilization of the ReSlice structures.

not allowed. We see that around 11% of the entries are shared. Con-
sequently, our structures save space by leveraging sharing.
Supporting Overlapping Slices. ReSlice supports the concurrent
re-execution of overlapping slices. Figure 13 compares ReSlice to a
scheme that can only re-execute one slice at a time (NoConcurrent
from Section 4.5.2), and a scheme where only one slice per task is
ever re-executed (1slice). We can see that, on average, 1slice only
delivers a speedup of 1.08, the conservative NoConcurrent only man-
ages 1.09, and ReSlice delivers 1.12. This data motivates our choice
of the ReSlice scheme.

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

S
pe

ed
up

0.8

0.9

1

1.1

1.2

1.3

1.4

1slice NoConcurrent ReSlice

TLS

Figure 13. Impact of fully supporting overlapping slices.

Perfect Environments. Figure 14 evaluates the performance possi-
ble in three perfect environments. Perfect coverage (Perf-Cov) means
that, when a violation is detected, the corresponding slice is always
found buffered. Perfect re-execution (Perf-Reexec) means that the
re-execution of every buffered slice is always correct. These two
schemes improve performance by 3%, and their combination (Per-
fect) improves it by 6%. This data shows that ReSlice delivers most
of the potential for selective re-execution.

bzip2 crafty gap gzip mcf parser twolf vortex vpr G.Mean

S
pe

ed
up

0.8

0.9

1

1.1

1.2

1.3

1.4

ReSlice Perf−Cov Perf−Reexec Perfect

TLS

Figure 14. Comparison with perfect coverage and/or re-execution.

7. Conclusion

In TLS and other checkpoint-based architectures, data value mispre-
dictions are often detected only after hundreds or thousands of spec-
ulative instructions have retired. At that point, all these instructions
are re-executed. To reduce this waste, this paper made three contri-
butions. First, it developed a sufficient condition under which slice
re-execution and merge are guaranteed to correctly repair the state
of a program. Secondly, it proposed ReSlice, a broadly-usable ar-
chitecture that (i) buffers the forward slice as it is executed with a
predicted value, and (ii) can quickly re-execute the slice with the cor-
rect value much later and merge the resulting state with the program
state. Thirdly, this paper evaluated ReSlice. ReSlice sped-up a CMP
with already aggressive TLS running SpecInt applications by up to
33%, with a geometric mean of 12%. Moreover, E × D2 decreased
by 20%. These improvements were accomplished by saving on aver-
age 61% of the task squashes through slice re-execution. On average,

a slice re-executed only 6.6 instructions, compared to the 210 instruc-
tions that would be re-executed on a squash.

With the number of possible avenues for enhancing ILP or TLP
in SpecInt-type codes decreasing, and different forms of speculation
becoming more prominent, recovering wasted work as ReSlice does
is a promising approach to boost speedups.

References
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and

recovery: Towards scalable large instruction window processors. In MI-
CRO, Dec. 2003.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In ISCA, June
2000.

[3] B. Calder and G. Reinman. A comparative survey of load speculation
architectures. Journal of Instruction-Level Parallelism, 2000.

[4] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas. CAVA: Hiding
L2 misses with checkpoint assisted value prediction. Computer Archi-
tecture Letters, Dec. 2004.

[5] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt. Difficult-path branch
prediction using subordinate microthreads. In ISCA, May 2002.

[6] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. In ISCA, June 1998.

[7] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-order commit
processors. In HPCA, Feb. 2004.

[8] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa. Large virtual ROBs by
processor checkpointing. Technical Report UPC-DAC-2002-39, Uni-
versitat Politecnica de Catalunya, July 2002.

[9] R. Desikan, S. Sethumadhavan, D. Burger, and S. W. Keckler. Scalable
selective re-execution for edge architectures. In ASPLOS, Oct. 2004.

[10] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In
ISCA, May 1999.

[11] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for
a chip multiprocessor. In ASPLOS, Oct. 1998.

[12] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence decoupling:
Making use of incoherence. In ASPLOS, Oct. 2004.

[13] J.B. Keller, R.W.Haddad, and S.G.Meier. Scheduler which discovers
non-speculative nature of an instruction after issuing and reissues the
instruction. United States Patent 6,564,315, May 2003.

[14] I. Kim and M. Lipasti. Understanding scheduling replay schemes. In
HPCA, Feb. 2004.

[15] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed
early load retirement. In HPCA, Feb. 2005.

[16] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with
speculative multithreading. IEEE Trans. on Comp, Sep. 1999.

[17] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load
value prediction. In ASPLOS, Oct. 1996.

[18] W. Liu, J. Tuck, L. Ceze, K. Strauss, J. Renau, and J. Torrellas. POSH:
A profiler-enhanced TLS compiler that leverages program structure. In
IBM Watson P=AC2 Conference, Sep. 2005.

[19] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas.
Cherry: Checkpointed early resource recycling in out-of-order micro-
processors. In MICRO, Nov. 2002.

[20] J. F. Martı́nez and J. Torrellas. Speculative synchronization: Applying
thread-level speculation to explicitly parallel applications. In ASPLOS,
Oct. 2002.

[21] A. Merchant, D. Sagger, and D. Boggs. Computer processor with a
replay system. United States Patent 6,163,838, Dec. 2000.

[22] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic
speculation and synchronization of data dependences. In ISCA, 1997.

[23] A. Moshovos, D.Pnevmatikatos, and A. Baniasadi. Slice-processors: an
implementation of operation-based prediction. In ICS, June 2001.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead execution: An
alternative to very large instruction windows for out-of-order processors.
In HPCA, Feb. 2003.

[25] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
highly concurrent multithreaded execution. In MICRO, Dec. 2001.

[26] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. Tasking
with out-of-order spawn in TLS chip multiprocessors: Microarchitec-
ture and compilation. In ICS, June 2005.

[27] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors.
In MICRO, Dec. 1997.

[28] Y. Sazeides and J. E. Smith. The predictability of data values. In MICRO,
Dec. 1997.

[29] P. Shivakumar and N. Jouppi. CACTI 3.0: An integrated cache timing,
power and area model. Technical Report 2001/2, Compaq Computer
Corporation, Aug. 2001.

[30] G.S. Sohi, S.E. Breach, and T.N. Vijayakumar. Multiscalar Processors.
In ISCA, June 1995.

[31] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Con-
tinual flow pipelines. In ASPLOS, Oct. 2004.

[32] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving value
communication for thread-level speculation. In HPCA, Feb. 2002.

[33] J. G. Steffan and T. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In HPCA, Feb. 1998.

[34] M. Weiser. Program slicing. In Proceedings of the International Con-
ference on Software Engineering, 1981.

[35] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In
PLDI, June 2004.

[36] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
HotLeakage: A temperature-aware model of subthreshold and gate leak-
age for architects. Technical Report CS-2003-05, Univ. of Virginia,
March 2003.

[37] H. Zhou and T. Conte. Enhancing memory level parallelism via
recovery-free value prediction. In ICS, June 2003.

Appendix A: Correctness Proofs
We use l and s to represent a load and store instruction, and A(l) and A(s)
their addresses. We define s to be an Inhibiting Store (Figure 2(a)) if: s ∈ S1;
s ∈ S2; s stores to different addresses in S1 and S2; and s in S2 stores to
an address that is read or written in I1. We define l to be a Dangling Load
(Figure 2(b)) if: l ∈ S1; l loads from the same address in I1 and I2; and if s is
the store that produces the value for l in S1, then in I2, the store has changed
its address and, therefore, now A(s) �= A(l). We define l to be an Inhibiting
Load (Figure 2(c)) if: l ∈ S1; l ∈ S2; l loads from different addresses in S1
and S2; and l in S2 loads from an address that is written to in I1.

Let ReSlice buffer the forward slice S1 of a seed, along with slice live-ins,
and keep the instructions in program order. Let ReSlice also log the values
overwritten at every first update to an address by instructions in S1. Let I1
and I2 have the same control flow.

Consider the case when the PCs of the sequence of instructions in slices S1
and S2 are different. Let us scan S1 and S2 together from top to bottom until
we find the first position i where the PCs of the corresponding instructions in
S1 and S2 differ.
Theorem 1 At least one of the two instructions in position i must be a load.
Moreover, this load loads from the same address in both I1 and I2.
Proof: Suppose that none of the two instructions in position i is a load. Then,
the reason why they belong to S1 or S2 must be because of a register depen-
dence with an earlier instruction ix in the slice. Since ix is there in both slices,
the two instructions in position i must be part of both slices by the definition
of register dependence, and be the same. This is not true. Therefore, at least
one of the two instructions must be a load, and be part of one slice because
it reads the value from a previous store from that one slice. Let us call that
load λ, and write it as LD Rdst, Disp(Rsrc). Note that λ cannot be register-
dependent on an earlier instruction in its slice because, otherwise, λ would
belong to both slices S1 and S2. Consequently, Rsrc is not updated by any
earlier instruction in the slice, and it has the same contents in both I1 and I2.
Therefore, λ loads from the same address in both I1 and I2. The reason why
λ belongs to only one of the slices is that a preceding store σ that belongs to
both S1 and S2 writes to different addresses in S1 and S2. Only one of such
addresses is equal to the one that λ loads from.
Theorem 2 If S1 �= S2 (i.e., they have a different sequence of PCs), there
must be a Dangling load or an Inhibiting store in S1.
Proof: There are two cases, depending on which slice has λ:
Case 1: λ ∈ S1 ∧ λ /∈ S2 - In this case, σ in S1 writes to address A(λ),
while in S2, it writes to a different address. Moreover, no instruction in S2
preceding λ writes to A(λ) — otherwise λ would be in S2. Thus, by defini-
tion λ is a Dangling load.
Case 2: λ /∈ S1 ∧ λ ∈ S2 - In this case, σ in S2 writes to address A(λ),
while in S1, it writes to a different address. Note that σ is in both S1 and S2
because λ is the first instruction that is in one slice and not in the other. Since
Theorem 1 showed that A(λ) is the same in both slices, σ is by definition an
Inhibiting store.
Theorem 3 If there are no Inhibiting stores and no Dangling loads, then
S1 = S2.
Proof: This theorem is the contrapositive of Theorem 2. Recall that we are
always considering only the case when the branches take the same directions
in I1 and I2.

We therefore found a sufficient condition to ensure S1 = S2. Now, we
need to prove that all the instructions in S2 get the correct operand values. For
that, we need to examine all the live-ins to the slice. Register live-ins pose no
problem, since they remain the same in the second run. On the other hand,
memory live-ins (i.e., the values obtained by loads), may change. We need to
prove their correctness.
Lemma 1 All stores in I2 that store to different addresses than they did in I1
belong to S2.
Proof: We have set S1 = S2 = S. In the non-slice instructions (i.e., I1−S),
stores store to the same addresses in I1 and I2. Therefore, any stores in I2
that store to different addresses in I1 and I2 must be in slice S2.

Theorem 4 If S1 = S2 and we disallow Inhibiting stores, Dangling loads,
and Inhibiting loads, the loads in S2 get the correct memory values.
Proof: Let l1 be a load in S1 and l2 the corresponding load in S2. There are
two cases.
Case 1: A(l1) = A(l2) - There are two possible subcases here: l1 got
the value from a store in S1 or from a store outside S1. In the first subcase,
assume that l1 got its value from store sx. In I2, l2 must also get its value
from the same store sx — otherwise l1 is a Dangling load. Thus, l2 gets
the correct memory value when the slice re-executes. Consider now the other
subcase. In this case, l2 cannot get its value from a store sx in S2. If it did,
sx would be an Inhibiting store, which is not allowed. Consequently, l2 must
get its value from a store outside S2. The saved live-in is correct when the
slice is re-executed.
Case 2: A(l1) �= A(l2) - If the load is an Inhibiting load (and therefore
l2 reads something that I1 wrote), we cannot guarantee correct re-execution.
However, if it is not Inhibiting (A(l2) is not written in I1), then from Lemma
1, A(l2) is either not written in I2 or it is written in S2. In either subcase, the
load gets the correct value when the slice re-executes: either from the memory
system because the address was never written in the task, or from the values
generated by S2 respectively.

We have just proved a sufficient condition for correct slice re-execution.
Now, we consider state merging. We assume ReSlice automatically logs the
values overwritten by every first update issued by S1 to an address. The prob-
lematic merging case is when a store s1 in S1 and its corresponding store s2
in S2 write to different addresses. If both values are live at the Resolution
point, merging requires undoing the update of s1 and applying the update of
s2.
Theorem 5 If we disallow Inhibiting stores, no other store in S1 beyond s1
has written to A(s1), and no update to A(s1) in the current task has yet been
undone, then the merging operation is correct.
Proof: Under these conditions, it is correct to apply the update of s2 and to
undo the update of s1. First, since the store cannot be Inhibiting, A(s2) is
neither read nor written in I1. As a result, applying the update of s2 (if live) is
always correct. Secondly, since A(s1) was only updated by s1 in S1, and no
previous slice in the task has yet induced an undo on the contents of A(s1),
the ReSlice log contains the correct value that needs to be restored to A(s1).
As a result, using the log to undo the update of s1 (if live) is correct.
Theorem 6 Given slices SL1, . . . , SLn that are potentially overlapping.
Let SL be the union of all the instructions in the slices in program order
(SL = SL1 ∪ . . . ∪ SLn). The condition for correct re-execution of SL is
the same as that for a single slice.
Proof: SL is different from a single slice because it contains several seeds.
Let the seed instructions load from addresses LX1, . . . , LXn. Here, we con-
sider only those slices that are not a strict subset of another slice. Note that
LX1, . . . , LXn are the same in I1 and in I2. Let us add a piece of hypothet-
ical code C preceding all the slices in the task (Figure 15(a)).

(b)(a)

}for i = 1 ... nST Vi, 0(V0)

{V1, V2, ... , Vn} = split(V)
LD V, <DUMMY_ADDR>

MOVI V0, #LXi

Program

SLi

Hypothetical
code

Slice in the
program

LXi

Figure 15. Unifying the overlapping slices.

In the code, V and V 0, V 1, . . . , V n are hypothetical registers. Moreover,
while the V i registers contain word-sized quantities, V is wide enough to hold
the concatenated value of n V i registers. Let us assume that the hypothetical
address < DUMMY ADDR > stores the concatenated value of all n
seeds; that we execute a load that loads such value into V ; and that we execute
an instruction that splits the contents of V into registers V 1, . . . , V n. Then,
the code stores the contents of V i into the LX1, . . . , LXn locations. The
purpose of C is to unify through dependences the code of all the slices into
a single slice S = SL ∪ C with a single seed instruction (Figure 15(b)).
Now, the condition for correct re-execution of S is like that of any other slice.
Finally, since C does not have side effects, we can remove C and the condition
for correct slice re-execution applies to SL.

