
Triage: Diagnosing Production Run Failures at the User’s
Site

Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos and Yuanyuan Zhou
Department of Computer Science

University of Illinois at Urbana Champaign
{tucek, shanlu, chuang30, xanthos2, yyzhou}@uiuc.edu

ABSTRACT
Diagnosing production run failures is a challenging yet important
task. Most previous work focuses on offsite diagnosis, i.e. devel-
opment site diagnosis with the programmers present. This is insuf-
ficient for production-run failures as: (1) it is difficult to reproduce
failures offsite for diagnosis; (2) offsite diagnosis cannot provide
timely guidance for recovery or security purposes; (3) it is infea-
sible to provide a programmer to diagnose every production run
failure; and (4) privacy concerns limit the release of information
(e.g. coredumps) to programmers.

To address production-run failures, we propose a system, called
Triage, that automatically performs onsite software failure diagno-
sis at the very moment of failure. It provides a detailed diagnosis
report, including the failure nature, triggering conditions, related
code and variables, the fault propagation chain, and potential fixes.
Triage achieves this by leveraging lightweight reexecution support
to efficiently capture the failure environment and repeatedly replay
the moment of failure, and dynamically—using different diagnosis
techniques—analyze an occurring failure. Triage employs a failure
diagnosis protocol that mimics the steps a human takes in debug-
ging. This extensible protocol provides a framework to enable the
use of various existing and new diagnosis techniques. We also pro-
pose a new failure diagnosis technique,delta analysis, to identify
failure related conditions, code, and variables.

We evaluate these ideas in real system experiments with 10 real
software failures from 9 open source applications including four
servers. Triage accurately diagnoses the evaluated failures, provid-
ing likely root causes and even the fault propagation chain, while
keeping normal-run overhead to under 5%. Finally, our user study
of the diagnosis and repair of real bugs shows that Triage saves time
(99.99% confidence), reducing the total time to fix by almost half.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.2.5 [Software Engi-
neering]: Testing and Debugging

General Terms
Experimentation, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

1. INTRODUCTION

1.1 Motivation
Software failures are a major contributor to system down time

and security holes. As software has grown in size, complexity and
cost, software testing has become extremely expensive, frequently
requiring hundreds of programmers dedicated to testing. Addition-
ally, this has made comprehensive software testing far more diffi-
cult. Consequently, it has become inevitable that even production
software packages contain a significant number of bugs, which re-
sult in software failures (e.g. crashes, hangs, incorrect results, etc.)
during production runs at end users’ sites. Since these errors di-
rectly impact end users, software vendors make them the highest
priority and devote extensive time and human resources to releas-
ing timely patches.

While much work has been conducted on software failure diag-
nosis, most previous work focuses onoffsitediagnosis (i.e. diagno-
sis at the development site with the involvement of programmers).
This is insufficient to diagnose production run failures for four rea-
sons. (1) It is difficult to reproduce the user site’s failure-triggering
conditions in house for diagnosis. (2) Offsite failure diagnosis can-
not provide timely guidance to select the best online recovery strat-
egy or provide a security defense against fast internet worms. (3)
Programmers cannot be provided onsite to debug every end-user
failure. (4) Privacy concerns prevent many users from sending fail-
ure information, such as coredumps or execution traces, back to
programmers. Unfortunately, today’s systems provide limited sup-
port for this important task:automatically diagnosing software fail-
ures occurring in end-user site production runs.

Unlike software bug detection, which is often conducted “blindly”
to screen for possible problems, software failure diagnosis aims to
understand a failure that has actually occurred. While errors de-
tected by a bug detector provide useful information regarding a
failure, they are not necessarily root causes—they could be just
manifestations of other errors [1, 45, 48]. Typically programmers
still need manual debugging with the aid of other diagnosis tech-
niques to collect enough information to thoroughly understand a
failure.

error

(buggy behavior)(root cause)

fault failure

(service interruption)

trigger (input or environment)

failure diagnosis

Figure 1: Failure diagnosis is driven by occuring failures and
tries to understand the whole fault chain

Following the definition used in software dependability [33], com-
prehensive knowledge of a software failure includes the fault, error,
and trigger (shown in Figure 1). Consequently, failure diagnosis
targets three things: (1) what execution misbehaviors caused the
failure, (2) where the misbehaviors came from, and (3) how the
fault was triggered. So while software bug detection is like disease
screening, failure diagnosis is more like disease diagnosis: it is a
focused, problem-driven analysis based on anoccurringproblem.

1.2 Current State of the Art
Existing failure diagnosis work mostly focuses onoffsitediag-

nosis; hence although they provide some automated assistance they
rely heavily on programmers to manually and interactively deduce
the root cause. Examples of such offsite tools include interactive
debuggers [10], program slicing [1, 45, 48], and offline partial ex-
ecution path constructors from a coredump such as PSE [19]. Al-
most all of these tools either impose overheads too large (up to
100x) to be practical for production runs, or heavily rely on human
guidance.

The current state of the art ofonsitesoftware failure diagnosis is
primitive. The few deployed onsite diagnosis tools, like Microsoft’s
Dr. Watson [20] and the Mozilla Quality Feedback Agent [22], only
collect simple raw (unprocessed) failure information (e.g. core-
dumps and environment information). Recently proposed tech-
niques extract more detailed information such as traces of network
connections [7], system call traces [43], traces of predicated val-
ues [16], etc. Furthermore, some deterministic replay tools [9, 14,
41] have also been developed for uniprocessor systems.

While these techniques are helpful for in-house analysis of pro-
duction run failures, they are still limited because (1) the data sent
back are still raw, leaving the majority of the diagnosis task for pro-
grammers to conduct manually; and (2) they may not be applicable
due to end users’ privacy concerns.

1.3 Challenges for Onsite Diagnosis
Unfortunately, providing onsite diagnosis is not simply a matter

of slapping together a bunch of diagnosis techniques. We feel that
this is because to achieve this goal one must address several major
challenges:

(1) Efficiently reproduce the occurred failure: Since diagnosis
usually requires many iterations of failure executions to analyze
the failure, an onsite diagnosis needs an effective way to automat-
ically reproduce the failure-triggering conditions. Moreover, the
diagnosis tool should be able to reproduce the failure quickly, even
for failures that occur only after a long setup time.

(2) Impose little overhead during normal execution: Even mod-
erate overhead during normal execution is unattractive to end-users.

(3) Require no human involvement: We cannot provide a pro-
grammer for every end-user site. Therefore, various diagnosis tech-
niques should be employed automatically. Not only does each in-
dividual step need a replacement for any human guidance, but the
overall process must also be automated.

(4) Require no prior knowledge: We have no knowledge of what
failures are about to happen. So any failure-specific techniques
(e.g. memory bug monitoring) are a total waste during normal exe-
cution, prior to failure.

1.4 Our Contributions
In this paper, we proposeTriage, the first (to the best of our

knowledge) automatic onsite diagnosis system for software fail-

ures that occur during production runs at end-user sites. Triage
addresses the above challenges with the following techniques:

(1) Capturing the failure point and conduct just-in-time fail-
ure diagnosis with checkpoint-reexecution system support. Tra-
ditional techniques expend equal heavy-weight monitoring and trac-
ing effort during the whole of execution; this is clearly wasteful
given that most production runs are failure-free. Instead, Triage
takes lightweight checkpoints during execution and rolls back to
recent checkpoints for diagnosis after a failure has occurred. At
this moment, heavy-weight code instrumentation, advanced analy-
sis, and even speculative execution (e.g. skipping some code, mod-
ifying variables) can be repeatedly applied to multiple iterations of
reexecution focusing only on the moment leading up to the failure.
In this scheme, our diagnosis has most failure-related information
at hand; meanwhile both normal-run overhead and diagnosis times
are minimized. In combination with system support for reexecu-
tion, heavy-weight bug detection and analysis tools become fea-
sible for onsite diagnosis. Furthermore, we can relive the failure
moment over and over. We can study it from different angles, and
manipulate the execution to gain further insights.

(2) New failure diagnosis techniques — delta generation and
delta analysis — that effectively leverage the runtime system
support with extensive access to the whole failure environment
and the ability to repeatedly revisit the moment of failure. The
delta generation relies on the runtime system support to specula-
tively modify the promising aspects of the inputs and execution
environment to create many similar but successful and failing re-
plays to identify failure-triggering conditions (inputs and execution
environment settings). From these similar replays, Triage automat-
ically conductsdelta analysisto narrow down the failure-related
code paths and variables.

(3) An automated, top-down, human-like software failure di-
agnosis protocol. As we will show in Figure 3, the Triage diag-
nosis framework automates the methodical manual debugging pro-
cess into a diagnosis protocol, called the TDP (Triage Diagnosis
Protocol). Taking over the role of humans in diagnosis, the TDP
processes the collected information, and selects the appropriate di-
agnosis technique at each step to get more information. It guides
the diagnosis deeper to reach a comprehensive understanding of
the failure. Using the results of past steps to guide future steps
increases their power and usefulness.

Within the TDP framework, many different diagnosis techniques,
such as delta generation, delta analysis, coredump analysis and bug
detection, are integrated. These techniques are automatically se-
lected at different diagnosis stages and applied during different it-
erations of reexecution to find the following information regarding
the occurred failure:

• Failure nature and type: Triage automatically analyzes the fail-
ure symptoms, and uses dynamic bug detection during reexecu-
tion to find the likely type of program misbehavior that caused
the failure. This includes both the general bug nature such as
nondeterministic vs. deterministic, and the specific bug type
such as buffer overflow, data race, etc.

• Failure-triggering conditions (inputs and execution environment):
Through repeated trials, Triage uses the delta generation tech-
nique to forcefully manipulate inputs (e.g. client requests) and
the execution environment to identify failure-triggering condi-
tions.

• Failure-related code/variable and the fault propagation chain:
Triage uses delta analysis to compare failing replays with non-
failing replays to identify failure-related code/variables. Then it

may intersect the delta results with the dynamic backward slice
to find the most relevant fault propagation chain.

(4) Leverage previous failure analysis techniques for onsite
and post-hoc diagnosis.Runtime system support for reexecution
with instrumentation and the guidance of the TDP diagnosis pro-
tocol allow Triage to synergistically use previous failure analysis
techniques. We have implemented some such techniques, includ-
ing static coredump analysis, dynamic memory bug detectors, race
detectors and backward slicing. However, as they are dynamically
plugged in after the failure has occurred, they require some mod-
ification. Both information from the beginning of execution and
human guidance are unavailable. Either the tools must do without,
or (especially in the case of human guidance) the results of previous
analysis steps must fill in.

We evaluate Triage using a real system implementation and ex-
periments on Linux with 10 real software failures from 9 applica-
tions (including 4 servers: MySQL, Apache, CVS and Squid). Our
experimental results show that Triage, including our delta genera-
tor and delta analyzer, effectively identifies the failure type, fault-
triggering inputs and environments, and key execution features for
most of the tested failures. It successfully isolates the root cause
and fault propagation information within a short list; under 10 lines
of suspect code in 8 out of the 10 failure cases. Triage provides
all this while it imposes less than 5% overhead in normal execution
and requires at most 5 minutes to provide a full diagnosis.

Finally, we performed a user study with 15 programmers. The
results show that the diagnostic information provided by Triage
shortens the time to diagnose real bugs (statistically significant with
p < .0001), with an average reduction of 44.6%.

2. Triage ARCHITECTURE OVERVIEW
Triage is composed of a set of user- and kernel-level compo-

nents to support onsite just-in-time failure diagnosis. As shown
in Figure 2, it is divided into three groups of components. First,
the runtime group provides three functions: lightweight periodic
checkpointing during normal execution, catching software failures,
and sandboxed reexecution (simple replay or reexecution with con-
trolled execution perturbation and variation) for failure diagnosis.
Second, thecontrol group deals with deciding how the subcom-
ponents should all interact, and implements the Triage Diagnosis
Protocol (see Section 3). It also directs the activities of the third
layer: failure diagnosis. Finally, theanalysisgroup deals with post-
failure analysis; it is comprised of various dynamic failure analysis
tools, both existing techniques and new techniques such as auto-
matic delta generation and delta analysis presented in Sections 4
and 5.

Replaying
Application

Application

Core Dump

Analysis Generation

Delta

Analysis

Delta
Rollback/Replay

Sandbox

Checkpointing

...

generate
report

... ...

rollback requests & instrumentation (repeatedly)

N
or

m
al

Failure Monitoring

A
na

ly
si

s

II) Control (to programmer)

Failure!

...

&
 in

pu
ts

an
al

ys
is

 c
om

m
an

ds

re
su

lts

Triage Diagnosis Protocol (TDP)

III) Analysis

I) Runtime

Figure 2: Triage architecture overview

Checkpoint and Reexecution.
In order to allow repeated analysis of the failure, Triage requires

checkpoint and reexecution support. There are many ways to im-
plement reexecution, such as Time Traveling Virtual Machines [14]
or Flashback [41]. Triage leverages the lightweight checkpoint and
reexecution runtime system provided in our previous work, Rx. We
briefly describe it here; details can be found it [32, 41].

Rx takes checkpoints using afork() -like operation, keeping
everything in memory to avoid the overhead of disk accesses. Roll-
back operations are a straightforward reinstatement of the saved
task state. Files are handled similarly to previous work [17, 41]
by keeping a copy of accessed files and file pointers at the begin-
ning of a checkpoint interval and reinstating it for rollback. Net-
work messages are recorded by a network proxy for later replay
during reexecution. This replay may be potentially modified to suit
the current reexecution run (e.g. dropped or played out of order).
Triage leverages the above support to checkpoint the target appli-
cation at runtime, and, upon a failure, to roll back the application to
perform diagnosis. Rx is particularly well suited for Triage’s goals
because it tolerates large variation in how the reexecution occurs.
This allows us not only to add instrumentation, but to use controlled
execution perturbations for delta generation.

However, Rx and Triage have vastly different purposes and hence
divergent designs. First, Triage’s goal is diagnosis, while Rx’s is
recovery. Triage systematically tries to achieve an understanding
of the occurring failure. Such an understanding has wide utility,
including recovery, security hot fixes, and debugging. Rx simply
tries to achieve survival for thecurrent execution–gathering fail-
ure information is a minor concern so long as Rx can recover from
the failure. That is, Rx considers the “why?” to be unimportant.
Second, while Rx needs to commit the side effects of a success-
ful reexecution, Triage must instead sandbox such effects. For-
tunately, this allows Triage to completely ignore both the output
commit problem and session consistency. Hence Triage can con-
sider much larger and varied execution perturbations than Rx, even
those which are potentially unsafe (e.g. skipping code or modify-
ing variable values), with minimal consistency concerns. Triage
directly uses some of Rx’s existing perturbations (e.g. changing
memory layouts), uses others with both a much higher degree of
refinement and variety (input-related manipulations, see § 4), and
briefly considers some radical changes (patching the code).

Lightweight Monitoring to detect failure and global ex-
ecution history.

Also like Rx, Triage must detect that a failure has occurred. Any
monitoring performed at normal time cannot impose high over-
head. Therefore, the cheapest way to detect a failure is to just catch
fault traps including assertion failures, access violations, divide-by-
zero exceptions, etc. Unique to Triage, though, is the need to moni-
tor execution history for subtle software faults. More sophisticated
techniques such as program invariant monitoring or memory safety
monitoring [31, 25] can be employed as long as they impose low
overhead. In addition to detecting failures, lightweight monitoring
can be also used to collected some global program execution his-
tory such as branch histories or system call traces that will be useful
for onsite diagnosis upon a failure. Previous work [4] has shown
that branch history collection imposes less than 5% overhead. In
our current implementation we rely on assertions and exceptions as
our only normal-run monitors.

Control Layer.
The process of applying diagnosis tools through multiple reexe-

cutions is guided by the control layer, which implements the Triage

Diagnosis Protocol described in Section 3. It chooses which anal-
ysis is appropriate given the results of previous analysis, and also
provides any inputs necessary for each analysis step. After all anal-
ysis is complete, the control layer sends the results to the off-site
programmers for them to use in fixing the bug.

Analysis (Failure Diagnosis) Layer.
Figure 3 provides a brief summary of the different failure diag-

nosis components in Triage. The stage one techniques are modified
from existing work to make them applicable for onsite failure diag-
nosis. Stage 2 (delta generation) is enabled by our runtime system
support for automatic reexecution with perturbation and variation.
Dynamic backward slicing, although previously proposed, is made
much more feasible in post-hoc application during reexecution. Fi-
nally, delta analysis is newly proposed. The details of these tech-
niques are presented in Section 4, 5, and 6.

3. Triage DIAGNOSIS PROTOCOL
This section describes Triage’s diagnosis protocol. The goal

of the protocol is to stand in for the programmer, who cannot be
present, and to direct the onsite software diagnosis process auto-
matically. We first present the default protocol using some repre-
sentative fault analysis techniques, and then discuss extensions and
customizations to the default protocol.

A

Block
1
2

28K
J
I

H

G

F

E

D

C

B

3
4

6
7

8

9
10
11

12
13

14
15
16

17
18

19
20
21
22
23
24

25

26

27

5

CodeLine

return NULL;

get_directory_contents
(char * path, dev_t device){

dirp = opendir(dir);

/*Omitted*/

char * dirp = savedir(path);

}

}

/*More variable declarations*/
if(!dirp)

savedir_error(path);

char *
savedir

char const * entry;

char *

errno = 0;
/*More code omitted*/
if(children != NO_CHILDREN)

for(entry = dirp;
 (len = strlen(entry));

if(dirp == NULL)

(const char *dir){

 entry += len + 1;){
/*Omitted*/

DIR *pdirp;
/*More variable declarations*/

}

/*Omitted*/

Figure 4: Simplified excerpt of a real bug in tar-1.13.25 as a
running example to explain the diagnosis protocol.

3.1 Default Protocol
Figure 3 shows a flow chart of the default diagnosis protocol

after a failure is detected. Triage uses different diagnosis tech-
niques (some new and some modified from existing work) to au-
tomatically collect different types of diagnostic information (as de-
scribed in the Introduction) including (1) the failure type and na-
ture, (2) failure-triggering input and environmental conditions, and
(3) failure-related code/variables and the fault propagation chain.
The diagnosis stages are arranged so that the later stages can effec-
tively use the results produced by the earlier stages as inputs, start-
ing points, or hints to improve diagnosis accuracy and efficiency.

Note that the default protocol is not the most comprehensive. Its
purpose is to provide a basic framework that performs a general
fault analysis as well as a concrete example to demonstrate the di-
agnosis process and ideas, and it could be extended and customized
with new or application-specific diagnosis techniques.

Figure 4 shows a simplified version of a bug in tar, the com-
mon Unix archive program, which we will use as a running exam-
ple to explain the diagnosis protocol and new diagnosis techniques.
Briefly, the bug occurs when the line 24 call toopendir returns
NULL; subsequently this value is passed intostrlen on line 13
without being checked. In the actual source code this bug is spread
across thousands of lines in two separate files in separate directo-
ries.

In the first stage of diagnosis, Triage conducts analysis to iden-
tify the nature and type of the failure. It first mimics the initial
steps a programmer would follow when diagnosing a failure: sim-
ply retry the execution, without any control or change and without
duplicating timing conditions, to determine if the failure is deter-
ministic or nondeterministic. If the failure repeats, it is classified as
deterministic; otherwise it is classified as nondeterministic based
on timing. Subsequent steps vary depending on this initial clas-
sification. For the tar example, this step indicates a deterministic
bug.

To find out whether the failure is related to memory, Triage an-
alyzes the memory image at the time of failure, when coredumps
are readily available, by walking through the heap and stack to find
possible corruptions. For tar, the coredump analysis determines
that the heap and the stack are both consistent; the cause of the
failure is a segmentation fault at0x4FOF1E15 in the library call
strlen .

After coredump analysis, the diagnosed software is repeatedly
rolled back and deterministically reexecuted from a previous check-
point, each time with a bug detection technique dynamically at-
tached, to check for specific types of bugs such as buffer over-
flows, dangling pointers, double frees, data races, semantic bugs,
etc. Most existing dynamic bug detection techniques can be plugged
into this step with some modifications described in Section 6. Ad-
ditionally, the high overhead associated with these tools becomes
tolerable because they are not used during normal execution, but
are dynamically plugged in at reexecution, during diagnosis,after
a failure has occurred. For tar, we find that the segfault was caused
by a null-pointer dereference.

The second stage of the diagnosis is to find failure triggering con-
ditions including inputs and execution environment settings, such
as thread scheduling, memory layout, signals, etc. To achieve this,
we use a technique we calldelta generation(§ 4) that intention-
ally introduces variation during replays in inputs, thread schedul-
ing, memory layouts, signal delivery, and even control flows and
memory states to narrow the conditions that trigger the failure for
easy reproduction.

Unlike our previous Rx work [32] that varies execution environ-
ments to bypass deterministic failures for recovery, our execution
environment variation can be much more aggressive since it is done
during diagnostic replay while side effects are sandboxed and dis-
carded. For example, not only does Triage drop some inputs (client
requests), but it also alters the inputs to identify the input signature
that triggers the failure.

In the third stage, Triage aims at collecting information regard-
ing failure-related code and variables as well as the fault propaga-
tion chain. This stage is done by a new diagnosis technique called
delta analysis(§ 5) and with a modified dynamic backward slic-
ing technique [45]. From the delta generation, Triage obtains many
failed replays as well as successful replays from previous check-

Identify failure type & location, and error type & location
1) Simple replay:

3) Dynamic bug detection:
related memory locations (specifically with memory bug detection or race detection)

2) Coredump analysis:Isolate failing PC, memory location & heap/stack consistency
Distinguish deterministic vs. non−deterministic failuresTechniques

Goal

Locate potential bug types, error points, and error−

Determine failure−triggering conditions (e.g. inputs, environments, schedules, etc.)
1) Delta generation:

a) Input testing such as delta debugging to isolate fault−triggering inputs
b) Environment manipulation to isolate failure triggering conditions
c) Schedule manipulation to eliminate false positive races & find bad interleavings

Create many different program executions, by:Techniques
Goal

Techniques
Goal Find fault/error related code and variables, including the fault propagation chain

1) Delta analysis:
a) Comparisons of the Basic Block Vector of good & bad runs
b) Path comparison, which computes the "diff" between good & bad runs

Compare failing & non−failing runs to isolate failure−related code

2) Dynamic backward slicing:
to find the failure propagation chain

Compute instructions which influenced another

St
ag

e
1

St
ag

e
3

St
ag

e
2

Deterministic or not, crash point
PC, memory bug type, PC, &
variable, data race PC & variable.

Fault triggering input,
good/bad input pair, fault
triggering environment,
bad code interleaving.

Fault propagation chain,
bad run characteristics.

Output

R
ep

or
t

to
 p

ro
gr

am
m

er

Figure 3: Diagnosis protocol (TDP) diagram(This figure illustrates the Triage diagnosis protocol, including the failure diagnosis components we
have implemented. These separate analysis components are run in one or more iterations of reexecution, during which all side-effects are sandboxed.
Later stages are fed results from earlier stages as necessary.)

points. By comparing the code paths (and potentially data flows)
from these replays, Triage finds the differences betweed failed re-
plays and non-failing replays. Further, the backward slice identifies
those code paths which were involved in this particular fault propa-
gation chain. Both of these are very useful debugging information.

All of the analysis steps end in producing a report. If rank-
ing is desired, results of different stages could be cross-correlated
with one another; our current implementation doesn’t do this yet.
Furthermore, information which is likely to be more precise (e.g.
memory bug detection vs. coredump analysis) can be prioritized.
The summary report gives the programmer a comprehensive analy-
sis of the failure. An example of a report (as used in our user study)
can be seen in Table 5.

3.2 Protocol extensions and variations
The protocol and diagnostic techniques discussed above provide

good results for diagnosis, and indeed represent what we have im-
plemented for evaluation. However, especially for more specific
cases, there could be many potential variations. There are many
bug diagnosis techniques, both existing and as of yet unproposed,
which could be added. For instance, information flow tracking [28,
36] can reliably detect “bad behavior” caused by inappropriate use
of user-supplied data. Also, the diagnosis order can be rearranged
to suit specific diagnosis goals or specific applications. For exam-
ple, input testing could be done for nondeterministic bugs. Or, for
some applications, some steps could be omitted entirely (e.g. mem-
ory bug detection may be skipped for programs using a memory
safe language like Java). To extend the protocol, all that is neces-
sary is to know what inputs the tool needs (e.g. a set of potentially
buggy code lines), what priority it is (we use cost to determine pri-
ority), and what outputs it generates (e.g. the failing instruction).
Alternatively, a protocol may be custom-designed for a particular
application and include application-specific tools (say, a log ana-
lyzer for DB2). We are currently exploring the possibilities of ex-
tending and varying the protocol, as well as reducing the amount of
effort it takes to add in new components.

The dynamic backward slice and the results from delta analysis
can be combined through intersection. That is, we can consider to
be more relevant those portions of the backward slice which are
also in the path delta (see Section 5). This will not only identify the
code paths which are possibly in the propagation chain, but high-
light those which differ from normal execution. We are considering
ways in which this information may be best presented to the pro-

grammer while at the same time considering that portions of the
propagation chain may not be in the path delta.

Triage may attempt to automatically fix the bug. Quite a large
amount of information is at hand after Triage finishes its analy-
sis. In a straightforward manner, we can begin automatically fil-
tering failure-triggering inputs (as in [5, 13, 42]), to avoid trigger-
ing the bug in the future. With a higher degree of risk, we may
be able to generate a patch. Currently we have preliminary re-
sults of identifying heap-buffer overflows and repairing them, by
instrumenting the calculation for how large the buffer must be al-
located. Finally, since our goal is merely to gather diagnostic in-
formation, we can attempt quite “risky” fixes, such as dynamically
deleting code or changing variable values, in an attept to see which
changes will prevent failure during replay. Such speculative tech-
niques that were proposed for recovery, such as failure oblivious
computing [34], or forcing the function to return an error value as
proposed in STEM [38], can also be borrowed here. While those
techniques can be very risky when used for recovery, they are fine
for diagnosis purposes, since all side-effects of any replay are dis-
carded during the diagnosis process. We are further considering
automatic patch generation, as well as using “unsafe” patches for
diagnostic purposes.

4. DELTA GENERATION
A key and useful technique commonly used by programmers

when they manually debug programs, is to identify what differs
between failing and non-failing runs. Differences in terms of in-
puts, execution environments, code paths and data values can help
programmers narrow down the space of possible buggy code seg-
ments to search for the root cause. Triage automates this manual,
time-consuming process using a delta generation technique, which
(through the runtime system support for reexecution) captures the
failure environment and allows automatic, repetitive delta replays
of the recent moment prior to the failure, with controlled variation
and manipulation to execution environment.

Delta generation has two goals. The first goal is to generate many
similar replays from a previous checkpoint, some of which fail and
some of which do not. During each replay, detailed information is
collected via dynamic binary instrumentation to perform the next
step—delta analysis.

Second, from those similar replays, the delta generator identifies
the signatures of failure-triggering inputs and execution environ-
ments, which can be used for two purposes: (1) report to program-

mers to understand the occurred failure and efficiently find a way
to reproduce the failure; and (2) guide the online failure recovery
or security defense solutions by actively filtering failure trigger-
ing inputs like in Vigilante [8], Autograph [13], Sweeper [42] and
others [39, 15, 30], or avoiding failure triggering execution envi-
ronments like in the Rx recovery system [32].

To achieve the above goals, our delta generator automatically
and repeatedly replays from a recent checkpoint, with controlled
changes in input and execution environment (including dropping
messages, modifying inputs, changing allocation sizes, and modi-
fying scheduling). Thus, it obtains closely related failing and non-
failing runs.

Changing the input (input testing).
If a program is given a different input (client request stream for

servers), in most cases it will have a different execution. If it is
given two similar inputs, then one would expect that the execu-
tions would also be similar. Furthermore, if one input fails and
one succeeds, the differences in the executions and in the inputs
should hold insights into the failure. It is this idea that motivates
the previously proposed delta debugging idea [47], anoffline de-
bugging technique for isolating minimally different inputs which
respectively succeed and fail in applications such as gcc.

So inspired by offline delta debugging, Triage automates this
process and applies it to server applications by replaying client re-
quests through a network proxy (see Section 2). The proxy extracts
requests as they arrive and stores them for future replay. Since
Triage is meant for the end-user’s site, it can leverage the availabil-
ity of real workloads. After a failure, the input tester searches for
which input triggers the failure by replaying a subset of requests
during reexecution from a previous checkpoint. If the failure is
caused by combinations of requests, Triage finds minimal triggers
by applying hierarchical delta debugging [21].

Besides identifying the bug-triggering request, the input-tester
also tries to isolate the part of the request that is responsible for the
bug. It does this in a manner reminiscent of data fuzzing [40],
“twiddling” the request, to create a non-failing request with the
“minimum distance” from the failing one. Triage focuses on delet-
ing characters to create smaller inputs, but it will also randomly
change characters. For well-structured inputs, like HTTP requests,
Triage will make protocol-aware changes; specific examples in-
clude changing “http:” to “ftp:”, and dropping semantically con-
sistent portions of the request (that is, whole HTTP directives). For
some bugs, the difference between inputs can be as little as one
character, and can generate highly similar executions. This maxi-
mizes the usefulness of the later delta analysis step. Finally, if the
specific triggering portion of the input is known (which particular
portion of a protocol), we create a “normal form” of the input. This
can address user’s privacy concerns, since their actual input need
not be reported.

Changing the environment.
If a program is executed in a different environment (e.g. a dif-

ferent memory layout of thread scheduling) then execution could
also be different. This can be done artificially by modifying the ex-
ecution environment during reexecution. There are several known
techniques proposed by previous work such as Rx [32] and Die-
Hard [3]. Triage will pad or zero-fill new allocations, change mes-
sage order, drop messages, manipulate thread scheduling, and mod-
ify the system environment. Triage applies these techniques to
generate different replays even from the same input. Unlike the
previous work, Triage is not randomly twiddling with the environ-
ment for recovery purposes, but rather to generate more failing and

succeeding executions. Further, unlike our previous Rx work, we
already have some idea about the failure based on earlier failure
analysis steps. We can target our perturbations directly at the ex-
pected fault. For example, for a deterministic failure, Triage does
not attempt different thread schedules. Similarly, given we know
that a particular buffer has overflowed, we specifically target its al-
location, rather than blindly changing all allocations. Moreover,
a non-recovery focus implies correctness is no longer an overrid-
ing concern, and Triage can exploit some speculative changes, as
described below.

Speculative changes (preliminary).
Our execution perturbation during replay can be speculative since

all side-effects during replay are sandboxed and discarded. For ex-
ample, during replay, we can force the control flow to fall through
a non-taken branch edge. We can also forcefully change some key
data’s value during replay. The new value can be some common
value in non-failing runs (generated by the input tester). Such
changes clearly violate the semantic correctness requirements of
Rx; however, they can be useful for diagnosis. We are currently ex-
ploring which sorts of changes are likely to produce most fruitful
for diagnosis.

A H I
CJ

K
B E F GD Bad Run

Good Run

CFG

Figure 5: Control flow graph and two executions of our running
tar bug example shown in Figure 4

Result of Delta Generation.
The result of delta generation is a set of many similar failing

and non-failing replays. To feed into the next stage, delta analysis,
Triage extracts a vector of the exercise counts of each basic block
(the basic block vector) and a trace of basic blocks from each re-
play. Alternatively, we could increase the granularity to the instruc-
tion level or reduce it to the level of function calls. Further, both
instruction- or function- level granularity could include or exclude
data arguments. Finer granularities capture more detail, but also
introduce more noise. For general use, we consider the basic-block
level to be a good trade-off.

Figure 5 shows the control-flow graph of our running bug ex-
ample bug, with a failing run and a non-faining run superimposed.
The good run visits basic blocks AHIKBDEFEF...EG, while the
bad run visits blocks AHIJBCDE, and then fails. The good run has
a basic block vector of {A:1, B:1, D:1, E:11, F:10, G:1, H:1, I:1,
K:1}, while the bad run has {A:1, B:1, C:1, D:1, E:1, H:1, I:1, J:1}.

5. DELTA ANALYSIS
Based on the detailed information from many failing and non-

failing replays produced by the delta generator, the delta analyzer
examine these data to identify failure-related code, variables and
the most relevant fault propagation chain. It is conducted in three
steps:

(1) Basic Block Vector (BBV) comparison: Find a pair of most simi-
lar failing and non-failing replay,S andF , using a basic block vec-
tor (BBV) comparison and also identify those basic blocks unique
to failing runs—suspects for root causes.

(2) Path comparison: Compare the execution path ofS andF and
get the difference in the control flow path.

(3) Intersection with backward slice: Intersects the above differ-
ence with dynamic backward slices to find those differences that
contribute to the failure.

Basic Block Vector (BBV) Comparison.
For each replay produced by the delta generator, the number

of times that each basic block is executed during this replay is
recorded in a basic block vector (BBV). This information is col-
lected by using dynamic binary instrumentation to instrument be-
fore the first instruction of every basic block.

The first part of the BBV comparison algorithm calculates the
Manhattan distance of the BBVs of every pair of failing replay
and non-failing replay and then finds the pair with the minimum
Manhattan distance. The computation is not expensive for a small
number of failing and non-failing replays. But we can also trade-
off accuracy for performance since we do not necessarily need to
find the minimum pair—as long as a pair of failing and non-failing
replays are reasonably similar, it may be sufficient.

In our running example shown on Figure 5 (which only has 2 re-
plays), the BBV difference between the two replays is {C:-1, E:10,
F:10, G:1, J:-1, K:1}; the successful replays makes many iterations
through the EF loop, and does not execute C or J at all. The Man-
hattan distance between the two would therefore be 24.

To identify basic blocks unique to failing replays (and thus good
suspects for root causes), a more thorough BBV comparison algo-
rithm could compute statistics (e.g. the mean and standard devi-
ation) on each BBV entry. Performing significance tests between
the means of the failing and non-failing replays in a way similar to
PeerPressure [44] would allow us to answer a key question–is there
a statistically significant difference between the exercise count of
each individual basic block? Currently, our implementation does
not consider such tests.

Path Comparison.
While the BBV difference is helpful to identify basic blocks

unique to failing runs, it does not consider basic block execution
order and sequence. This limitation is addressed by our path com-
parison. Our goal with the path difference is to identify those seg-
ments of execution where the paths of the failing and non-failing
replay diverge. The pair of failing and non-failing replays is the
most similar pair identified by the BBV comparison. Similar to
BBV, the execution path information is collected during each re-
play in the delta generation process. It is represented in a path
sequence, a stream of basic block executed in a replay.

Given two path sequences (one from the failing replay and the
other from the non-failing replay), the path comparison computes
theminimum edit distancebetween the two, i.e. the minimum num-
ber of simple edit operations (insertion, deletion and substitution)
to transform one into the other. Much work has been done on find-
ing minimum edit distances; we use theO(ND) approach found
in [23]. The path comparison algorithm also records these edit op-
erations that give the minimum edit distance between the two path
sequences.

In our running example, we would be finding the minimum edit
distance between AHIJBCDE (the failing run) and AHIKBDEFEF-
...EG (the non-failing run). Insdiff format, this is:

A H I K B D E F E F ... E G
- v ^ ^ ^ ^ ^

A H I J B C D E

This demonstrates the difference in program execution: the fail-
ing replay takes branch J instead of K, an extra block C, and is
truncated prior to the EF loop.

2

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

1
2
3
4

5
6
7

8

9

13
12

14
15
16
17
18

20

11
10

21
22
23
24

25

26

27
28

19

26

12

4

13

A

E

J J J

E

C

F

G

K

E

A

B

C

D

E

F

G

H

I
J
K

Slice
Backward

Block
CodeLine Legend:

runs

Block appearing
only in successful

runs

Block appearing
only in failing

Common in
backward slicing

Delta
Analysis

Slicing & Delta
Intersection

and delta analysis

3

1

Figure 6: An example presenting backward slicing, delta anal-
ysis results and their intersection. It is derived from Figure 4.

Backward Slicing and Result Intersection.
To further highlight important information and eliminate noise,

we extract those path differences which are related to the failure,
i.e. in the fault propagation chain. This can be achieved by inter-
secting the path difference with the dynamic backward slice, which
is a program analysis technique that extracts a program slice con-
sisting of all and only those statements that lead to a given instruc-
tion’s execution [45]. The intersection results can help us focus
those instructions or basic blocks that are not only in the fault prop-
agation chain but also are unique to failing replays.

As shown in Figure 6, for a given instruction (the starting point
of a backward slice), its data or control dependent code lines are
extracted and a lot of irrelevant code lines (shown in Figure 4), are
discarded. This greatly reduces the amount of noisy information
that is irrelevant to the occurred failure. In our tar example, only
lines 12, 4 and 26 belong to the dynamic backward slice of the
failing instruction (line 13). This information, beyond being useful
to refine delta analysis, is useful to the programmer. Therefore, we
also report the whole backward slice results in the Triage report.

Unfortunately, backward slicing is non-trivial to apply to pro-
ductions runs. First, backward slicing requires a starting point from
which to slice; this would usually be supplied by the programmer.
In Triage, the results of other stages of analysis (see Figure 3) are
substituted for this human guidance.

Additionally, backward slicing incurs large time and space over-
heads, and therefore has seldom been used during production runs.
In Triage, the overhead problem is addressed in two ways. First, the
reexecution support makes the analysispost-hoc: backward slicing
is used only during replays after a failure occurs, when the over-
head is no longer a major concern. By using forward computa-
tion backward slicing [48] we can dynamically build dependence
trees during replay and need not trace the application from the be-
ginning. As a further optimization, Triage applies a function call
summary technique to certain known library calls. For some select
library calls, we use just one dependency, “return value depends
on input arguments”. This greatly reduces the overhead for some
commonly-called library functions. Our experiments show that the
resulting total analysis overhead is acceptably low.

Returning again to our example, the difference between our two
replays lies in the blocks {+J, -K, +C, +E, -F, -G},+J meaning that
blockJ either appears only in the failing run or contains the failing
instruction and-K meaning thatK appears only in the successful
run. In the backward slice, F, G, and K do not appear at all, while
J is very close on the potential propagation chain. If we consider
these {E, J, C, K, F, G}, we can rank the key differences to the very
top: the null pointer dereference in E is the failure, and thereturn
NULL; statement in J along with theentry=disp; assignment
in E are very important factors in the fault. Therefore, the two most
relevant to the failure basic blocks, as shown in Figure 6, are E and
J. Normal differences caused by accident of execution that are far
from the fault are ranked low, as they do not have a close impact on
the fault itself.

Data delta analysis (unimplemented).
It is conceivable that we could also compare the data values of

key variables (e.g. branch variables) to complement the compari-
son in control flows. However, this method requires collecting too
much information. Also it is hard to statistically compare data of
various types such as floating point variables, etc. Therefore, our
tool does not yet perform any data delta analysis. This remains as
future work.

6. OTHER DIAGNOSIS TECHNIQUES
Delta generation and delta analysis comprise stages 2 and 3 of

the TDP (Figure 3). For stage 1 Triage also uses other diagnosis
techniques. This section briefly describes these techniques.

Core dump analysis.
The Triage coredump analyzer considers the register state, what

signal caused the fault, and basic summaries of the stack and heap
state. The stack can be unwound starting from the currentebp
register value. By checking whether each stack frame is indeed
on the stack, and whether the return values point into the sym-
bol table, we generate a call-chain signature and detect possible
stack corruption such as stack smashing attacks. Heap analysis ex-
aminesmalloc() ’s internal data structures, walking chunk-by-
chunk through the block lists and the free lists. This identifies some
heap buffer overflows. If the application uses its own memory al-
locator, an application specific heap consistency checker is needed.
This step is extremely efficient (under 1s), and provides a starting
point for further diagnosis.

Dynamic bug detection.
Triage can leverage many existing dynamic bug detection tech-

niques to detect common bugs1. Currently, Triage employs two
types of dynamic common-bug detectors, a memory bug detector
and a race detector. These are only used during reexecution via dy-
namic instrumentation [18] to address overhead concerns. Triage’s
memory bug detector (MD) detects memory misbehaviors dur-
ing reexecution to search for four types of memory errors (stack
smashing, heap overflow, double free, and dangling pointers) us-
ing techniques similar to previous work [11, 26]. Once simple re-
play determines that a failure is nondeterministic, Triage invokes
the data race detectorto detect possible races in a deterministic
replay. Triage currently implements the happens-before race detec-
tion algorithm [27] by instrumenting memory accesses with PIN;
other techniques [37] would also certainly work.

1Note that dynamic bug detectors find errors,not faults, and while
useful, other techniques (e.g. delta analysis) are needed to find root
causes

7. LIMITATIONS AND EXTENTIONS

Privacy policy for diagnosis report.
After failure diagnosis, Triage reports the diagnosis results back

to the programmers. However, for some end-users, results such as
failure-triggering inputs may still contain potentially private infor-
mation. To address this problem, it is conceivable to extend Triage
to allow users to specify privacy policies to control what types of
diagnosis results can be sent to programmers. Furthermore, unlike
a coredump, the information Triage sends back2 is “transparent”–
comprehending what is being sent in a Triage report, and verifying
that nothing confidential is being leaked, is much easier than un-
derstanding a memory image.

Automatic patch generation.
Triage provides a wealth of information about occurring failures;

we have attempted to use this information to automatically gener-
ate patches. However, without an understanding of the semantics
of the program, our success has been limited. For heap buffer over-
flows, we can identify the allocation point of buffer which over-
flows. Similarly to Rx [32], we can apply padding; unlike Rx
we have identified one particular allocation point. As we are not
blindly extending every buffer, we can apply a permanent padding.
We try a linear buffer increase up to a cutoff, and then we try a
multiplicative increase. Although limited to a subset of heap buffer
overflows, this technique does provide an adequate patch for the
buffer overflow in Squid (see Section 9) which addresses all possi-
ble triggers. Currently, we are unable to create correct patches for
any other bugs.

Bug handling limitations.
Of course, Triage is not a panacea. For some bugs, it may be

difficult for Triage to provide accurate diagnostic information. For
example, since Triage does not have information prior to the check-
point, it is difficult to pinpoint memory leaks, although our core-
dump analysis may provide some clues about buffers that are not
freed and also no longer accessible. To address this may require
new bug detection techniques that do very lightweight monitoring
during normal execution, such as sample-based monitoring [12],
to help the heavy-weight instrumentation used during reexecution.
Similarly, Triage is ineffective if no failures are detected. While
many bugs lead to obvious failures, some bugs, especially seman-
tic bugs, result merely in incorrect operation, sometimes in subtle
ways. At the expense of normal run performance, failure detectors
can help, but some failures will be quite difficult to automatically
detect.

Another class of difficult bugs, although reported as rare by pre-
vious work [24], is bugs that take a long time to manifest. To diag-
nose such failures, Triage needs to replay from very old check-
points. Rolling back to old checkpoints is not a problem since
Triage can store old checkpoints to disk, assuming sufficient disk
space. The challenge lies in quickly replaying long windows of ex-
ecution to reduce diagnosis time. Solving this challenge is future
work.

Reproduce nondeterministic bugs on multiprocessor
architectures.

The current prototype of Triage supports deterministic replay
of single-threaded applications, and mostly determinstic replay of
multithreaded applications on uniprocessor architectures. It is very
difficult to support this functionality with low overhead in multi-

2See, for example, Tables 3, 4, and 5

Name Program App Description #LOC Bug Type Root Cause Description

Apache1apache-1.3.27 a web server 114K Stack Smash Long alias match pattern overflows a local array
Apache2apache-1.3.12 a web server 102K Semantic (NULL ptr) Missing certain part of url causes NULL pointer dereference
CVS cvs-1.11.4 GNU version control server 115K Double Free Error-handling code placed at wrong order leads to double free
MySQL msql-4.0.12 a database server 1028K Data Race Database logging error in case of data race
Squid squid-2.3 a web proxy cache server 94K Heap Buffer Overflow Buffer length calculation misses special character cases

BC bc-1.06 interactive algebraic language17K Heap Buffer Overflow Using wrong variable in for-loop end-condition
Linux linux-extract extracted from linux-2.6.6 0.3K Semantic (copy-paste error)Forget-to-change variable identifier due to copy-paste
MAN man-1.5h1 documentation tools 4.7K Global Buffer Overflow Wrong for-loop end-condition
NCOMP ncompress-4.2.4 file (de)compression 1.9K Stack Smash Fixed-length array can not hold long input file name
TAR tar-1.13.25 GNU tar archive tool 27K Semantic (NULL ptr) Directory property corner case is not well handled

Table 1: Applications and real bugs evaluated in our experiments.

processor architectures. addressing this problem would require ad-
vanced, recently proposed, hardware support such as Flight Data
Recorder [46] and BugNet [24] to achieve deterministic replay.

Deployment on highly-loaded machines.
Triage imposes negligible overhead in the normal-run case. How-

ever, it does expend significant resources during analysis. Although
the optimal case is to perform diagnosis immediately after the fail-
ure in the exact same environment, there are cases where this is
infeasible. To alleviate this, there are several possibilities. First,
diagnosis can occur in the background, while normal activities (or
even recovery) continue. It may even be deferred until a later time
when resources are available. A second possibility would be to
perform the analysis on a separate machine, albeit one still at the
user’s site; this would require extending Triage to include process-
migration support. Finally, it may be acceptable to skip the more
expensive analysis steps; although they are useful, it is better to
get something than nothing. Regardless, it is always the intent that
analysis should be done at the end-user’s site, and that only results
should be sent back to the programmers.

Handle false positives.
Even though in our experiments we have never encountered any

cases that Triage reports misleading information, it is conceivable
that in some rare cases Triage may report some wrong diagnosis
results due to the false positives introduced by some specific diag-
nosis techniques. This problem can be addressed by performing
more sophisticated consistency checks among results produced by
different diagnosis techniques and also incorporating the accuracy
of each technique into the result confidence ranking.

8. EVALUATION METHODOLOGY
To evaluate Triage, we conduct various experiments using 10 real

software failures with 9 applications (including 4 servers) as well
as a user study with real programmers. Triage is implemented in
the Linux operating system, version 2.4.22. Various diagnosis tech-
niques are implemented on top of a dynamic binary instrumentation
tool, PIN [18]. After a failure occurs, Triage dynamically attaches
PIN to the target program in the beginning of every reexecution
attempt.

Machine environment and parameters.
Our experiments are conducted on single-processor machines

with a 2.4GHz Pentium-4, 512KB L2 cache, and 1GB of memory.
Server application experiments use two such machines connected
with 100Mbps Ethernet; the server runs on one and the client runs
on the other. By default, Triage keeps twenty checkpoints, and
checkpoints every 200ms.

Evaluated Applications and Failures.
Table 1 shows the 9 applications (4 server and 5 open source util-

ities) and 10 bugs we evaluated. This suite covers a wide spectrum
of representative applications andreal software failures. The soft-
ware failures are segmentation faults or assertion failures, with the
underlying defects belonging to different categories: semantic bugs
(2 null pointer and 1 copy-paste), memory bugs (2 stack smashing,
2 heap overflow, 1 static buffer overflow, and 1 double free) and
1 data race bug. The error propagation distances also vary among
these applications.

User Study.
To validate that Triage reduces programmer effort in fixing bugs,

we conducted a user study. We used 5 fail-stop bugs: 3 toy pro-
grams with injected bugs, and two real bugs (the bugs in BC and
TAR). Participants were asked to fix the bugs as best as they could.
They were provide a controlled workstation with a full install of
Fedora Core 6 with a full suite of programming tools, including
Valgrind. To balance the difficulty of the bugs, we randomly gave
the programmers the error reports produced by Triage for half of
the bugs, and, as a control, we denied them the error reports for
the other half of the bugs. Aside from formatting, Table 5 is pre-
cisely the report given in the TAR case. All participants were given
a coredump, sample good and bad inputs, a prepped source tree,
and instructions on how to replicate the bug; although this elimi-
nated the difficulty of replicating the bug for the non-Triage case,
it was necessary to bring the task down to an achievable difficulty.
Further, there was a half hour time limit per real bug and 15 minute
time limit per toy bug; failure to fix the bug resulted in a recorded
time of the full limit3. The time limits were necessary for practical
purposes; participants averaged approximately two and a half hours
of total time each.

We ran our experiments with 15 programmers, drawing from lo-
cal graduate students, faculty, and research programmers. No un-
dergraduates were used. All of the subjects indicated that they have
extensive and recent experience in C/C++. We tested statistical sig-
nificance using a 1 sided paired T-test [35]. This test compares
each subject against themselves, to help account for individual pro-
grammer skill; the variation of individual programmer skill do still
appear in the overall means. To improve our results, we are still
continuing our user study with more participants.

9. EXPERIMENTAL RESULTS
Table 2 presents a summary of Triage’s diagnosis results for each

failure. For the four deterministic server bugs, we present results
from input testing/delta generation, delta analysis, and backward

3These time limits artificially show Triage in a bad light because
they bound the maximum time; this improves the performance of
the non-Triage cases.

Server Applications

App Results - Stages 2 & 3
Method Results Useful

A
pa

ch
e1

Input GET /trigger/crash.html ...
√

Testing Key part: /trigger/crash.html
√

Backward Found root-causeline
√

Slicing 8 instructions from crash
√

Delta Edit distance is 79089
√

Analysis Removes 12% of dynamic blocks
√

A
pa

ch
e2

Input GET ... Referer:1.2.3.4
√

Testing Key part:Referer:
√

Backward Found root-causeline
√

Slicing 3 instructions from crash
√

+
Delta Edit Distance is 5964

√

Analysis Removes 69% of dynamic blocks
√

C
V

S

Input
Stream of requests...

√
Testing

Backward Found root-causefunction
√

Slicing 4 functions from crash
√

Delta No result
Analysis Not applicable

M
yS

Q
L

Schedule
Bad interleaving pair: √

+
Manipulate

0x8132fa8 – 0x8128c4b
Found root-cause

√
+

S
qu

id

Input ftp://user\ *30:p@...
√

Testing Key parts:ftp, user
√

Backward Found root-causeline
√

Slicing 6 instructions from crash
√

Delta Edit distance is 54310
√

Analysis Removes 71% of dynamic blocks
√

Other Open-Source Applications

B
C

Backward Found root-causeline
√

Slicing 3 instructions from crash
√

+
Delta Edit distance is 5381

√

Analysis Removes 98% of dynamic blocks
√

+

Li
nu

x-
ex

tr. Backward Found root-causeline
√

Slicing 6 instructions from crash
√

Delta No result
Analysis Not applicable

M
A

N

Backward Found root-causefunction
√

Slicing 9 functions from crash
√

Delta No result
Analysis Not applicable

N
C

O
M

P Backward Found root-causeline
√

Slicing 5 instructions from crash
√

Delta No result
Analysis Not applicable

TA
R

Backward Found root-causeline
√

Slicing 6 instructions from crash
√

Delta Edit distance is 83564
√

Analysis Removes 68% of dynamic blocks
√

Table 2: Diagnosis results.
√

+ indicates exceptionally good re-
sults. For all of the bugs, Stage 1 (identify failure/error types
and locations) works as well as similar tools in existing litera-
ture.

slicing. As the nondeterministic bug isn’t reproduced during simple
replay, we instead perform schedule manipulation. Finally, for the
five application bugs, there is no input stream and hence we do
not provide input testing; further, our delta generation only worked
for BC and TAR of the application bugs, so we only provide delta
analysis for BC and TAR.

In all cases, Triage correctly diagnosis the nature of the bug (de-
terministic or nondeterministic), and in all 6 applicable cases Triage
correctly pinpoints the bug type, buggy instruction, and memory lo-
cation. Hence, Table 2 omits detailed listing of Stage 1 results. To
summarize Stage 2 and 3 results, for all the 5 server applications,

Triage Report for Application — Apache
Failure Point Information

Segment Fault (at) Instr:0x805e33f@ mod_alias.c:313
Stack / Heap? Corrupt / OK

Bug Detection Information
Deterministic Bug? Yes
Stack-smash (at) engine.c:212

Fault Propagation Information

Crash Point

util.c:374
<try_alias_list> mod_alias.c:311

if(!ap_regexec(..))

<regexec>
regexec.c:140

<lmatcher>
engine.c:147

<lmatcher>
engine.c:210

<ldissect>
engine.c:398

<lmatcher> engine.c:212
pmatch[i] m−>pmatch[i]

<try_alias_list> mod_alias.c:313
ap_gregsub(..,r−>uri,..)

Bug Point

<ap_regexec>

Failure Trigger Information
Failure-triggering input: GET /trigger/crash.html HTTP/1.1 ...
Critical part: GET /trigger/crash.html HTTP/1.1 ...
Normal-form: GET /trigger/crash.html HTTP/1.1 ...
Close non-failing inputs: GET /trigger/ HTTP/1.1 ...
Close non-failing inputs: GET / HTTP/1.1 ...

Table 3: Triage report for Apache-1.3.27 version

Triage successfully captures and reproduces the fault-triggering in-
put. Also, for the cases where delta analysis is applied, it reduces
the amount of execution (as measured by dynamic basic blocks,
from the checkpoint) that must be considered by 63%; for the best
case (BC) it reduces it by 98%. In 8 of the 10 cases, the root cause
instruction appears within the top 10 failure-relevant candidate in-
structions and in the other 2, within the top 10 failure relevant func-
tions. Finally, of note is that for the nondeterministic MySQL bug,
Triage finds an example interleaving pair which is the trigger for
the failure.

9.1 Triage Report Case Studies
In this section, we use three case studies to show how Triage

reports can help developers understand failures.

Case 1: Apache.
The bug in Apache 1.13.27 is a stack related, difficult to re-

produce and diagnose bug. As shown in Table 3, the failure oc-
curs at a call to functionap_gregsub . Coredump analysis in-
forms us an invalid pointer dereference at variabler . However,r
was correctly dereferenced a few lines before, and is not changed
throughout the function. Fortunately, Triage’s bug detector catches
a stack-smash in functionlmatcher , engine.c:212 . This is
useful, however, there are more confusing wrinkles: (1) the ap-
plication failsbeforefunction try_alias_list returns, which
means the overwritten return address is NOT the reason for the fail-
ure; and (2) there is no obvious connection betweenlmatcher
andtry_alias_list . How lmatcher can smash the stack of
try_alias_list is unclear.

The fault tree and the path differences provided by Triage’s delta
analyzer and the backward slicer clears up the above confusions.
Tracing from the root, the edge fromengine.c:212 to root indi-
cates the crashing function call gets pointer variabler ’s value from
the assignment in the stack-smash statement (engine.c:212).
This explains the failure: the stack-smashing overwrites the stack
frame(s) above it, and invalidates pointer variabler , an argument of
function try_alias_list . Tracing further back, we can iden-

tify that this function is called bytry_alias_list via a func-
tion pointer. The destination,pmatch[i] in engine.c:212 ,
is a fixed length stack array declared intry_alias_list . It is
filled in by functionap_regexec without bounds check (mod_-
alias.c:311).

The input testing in Triage’s delta generator in this case identifies
that the failure is independent of the headers of the request and also
that the failure is triggered by requests for a very specific resource
(/trigger/crash.html).

Triage Report for Application — Squid
Failure Point Information

Segment Fault (at) Instruction: 0x4f0f0907 (in lib.strcat)
called from ftp.c:1033

Stack/Heap? OK/Corrupt
Bug Detection Information

Deterministic Bug? Yes
Heap Overflow (at) lib. strcat

called from ftp.c:1033
Fault Propagation Information

<rfc1738_do_escape> rfc1738.c: 100
buf = xcalloc (bufsize, 1)

Bug Point
Crash Point

<rfc1738_do_escape> rfc1738.c: 99
bufsize = strlen (url) *3 + 1

<ftpBuildTitleUrl> ftp.c: 1004
len = 64 + srlen (user) + strlen

(host) + strLen (urlpath)

<ftpBuildTitleUrl> ftp.c: 1030
t = xcalloc (len, 1)

strcat
(library call)

<ftpBuildTitleUrl> ftp.c:1033
strcat (t, rfc1738_escape_part (user))

Failure Trigger Information
The failure triggering input was:

ftp://user\ (repeat 43 times):password@ftp.slackware.com
Trigger-critical parts:protocol,username
Normal-form of failure-triggering input:

ftp://user\ (repeat 30 times):p@ftp.slackware.com
Similar but not-failure-triggering inputs:

ftp://user\ (repeat 29 times):password@ftp.slackware.com
http://user\ (repeat 43 times):password@ftp.slackware.com

Table 4: Triage report for Squid 2.3-Stable5 version

Case 2: Squid.
As shown in Table 4, coredump analysis indicates that Squid

probably has a heap overflow triggered by a call tostrcat from
ftp.c line 1003. Triage’s memory bug detector confirms this,
catching a heap-overflow bug at said point. We can be fairly certain
that the failure is caused by a heap-overflow of buffert in ftp.c ,
line 1003. The fault propagation tree shows us how this happens: a
strcat of two buffers, one returned fromrfc1730_escape-
_part , and t from ftpBuildTitleUrl . It also shows how
these buffers were allocated; in the left branch we multiplystr-
len(url) by 3 while in the right branch we simply add the length
strlen(user) (which is passed asurl) to some other num-
bers. This is the root cause: it is possible for the buffer returned
by rfc1730_escape_part to be three times longer than ex-
pected (if there are many characters that need escaping), while the
strcat only can deal with 64 extra characters. Hence multiply-
ing the allocation size of thet buffer by 4 is sufficient to avoid
triggering the bug.

Finally, input testing provides the actual request that triggered
the failure. It is anftp request, where theusernamehas 43 instances
of “ ”. Furthermore, it identifies thenormal-formof the bug trig-
gering request, one with 30 repetitions of “ ” in theusernamefield,
and a minimally different non-failing request, where there are only
29 repetitions.

Triage Report for Application — Tar
Failure Point Information

Segment Fault (at) Instr: 0x4f0f1e13 (in lib.strlen)
called from increment.c:207

Stack/Heap? OK/OK
Bug Detection Information

Deterministic Bug? Yes
Null Pointer (at) lib. strlen, called from incremen.c:207

Fault Propagation Information

Crash Point <strlen>

<get_directory_contents>
incremen.c:206

entry = dirp

<get_directory_contents>
incremen.c:180

dirp = savedir(path)

<savedir>
savedir.c:87
return NULL

<get_directory_contents>
incremen.c:207

entrylen = strlen(entry)

Table 5: Triage report for tar-1.13.25

Component Diagnosis Time
App. Total Core- Input Bug Slicing Delta

Dump Test Detect Anal.
Apache1 68 s 0.06 s 9 s 14 s 45 s 27 m

BC 303 s 0.03 s 0 s 98 s 205 s 9 s
Squid 145 s 0.04 s 7 s 30 s 108 s 64 m

Table 6: Triage failure diagnosis time, in seconds (s) and minute
(m). Total excludes delta analysis.

Case 3: tar.
Case study three is our running example (see Figure 4). Briefly,

Table 5 shows the output of Triage on this bug. Since we have dis-
cussed this bug in previous sections, we do not explain the results
further. Of note is that the figure shows exactly the same informa-
tion provided in the user study.

9.2 Normal Execution Overhead
Triage imposes negligible overhead during execution; it should

be nearly indistinguishable from the overhead of the underlying
checkpoint system [32]. Figure 7 shows the results for three ap-
plications: Squid (network bound), BC (CPU bound), and MySQL
(both). To explore the effects of checkpoint interval, we also run
squid at checkpoint intervals from 400 to 30 ms. In no case is the
overhead during normal runtime over 5%. For the 400ms check-
point interval, the overhead drops to 0.1%. Given such low over-
head, Triage is acceptable during normal execution. This is because
we only run analysisafter a failure has occurred.

9.3 Diagnosis Efficiency
With the exception of delta analysis, Triage’s diagnosis is very

efficient: all diagnostic steps finish within 5 minutes, when run-
ning in the foreground. Table 6 lists the diagnosis time break down
for three representative applications: an IO and network-bound ap-
plication, apache; a CPU-bound application,bc; and a network-
bound application,squid. Among the different diagnosis compo-
nents, delta analysis takes the longest time, because it examines
every basic block. For tasks with very small deltas (like BC), it is
efficient. If the edit distance becomes large, theD (edit distance)
term in theO(ND) complexity becomes expensive. Also, for the
apache andsquid bugs chosen, the largerD causes high memory
pressure; more complex implementations of the edit distance al-
gorithm have much better space efficiencies [23]. However, given
their expense, the path comparison stage of delta analysis as well as
backward slicing are top candidates to be run in the background (or
on a different machine) to avoid interfering with foreground tasks.

.991

squid

.950

mysql

.992

bc400 200 100 50 30

.991 .986 .966 .952.999

0.0

.25

.50

.75

1.0

0.0

.25

.50

.75

1.0

P
er

fo
rm

an
ce

(n
or

m
al

iz
ed

)

a) Checkpoint interval
in milliseconds (squid)

b) Application

(n
or

m
al

iz
ed

)
P

er
fo

rm
an

ce

Figure 7: Normalized performance during normal-time execution. a)
shows squid at checkpoint intervals from 400 ms to 30 ms, while b)
shows squid, MySQL, and bc at 200ms intervals.

Ti
m

e
to

 F
ix

(n
or

m
al

iz
ed

) 1.0

.25

0.0

.50

.75

Real Bugs Toy Bugs

Legend: Triage

No Triage

Figure 8: Results from the user study, with error bars showing 95%
confidence intervals. Normalization is to real bugs without Triage

9.4 User Study
Our user study (described in Section 8) has demonstrated very

positive results. As shown in Figure 8, on average programmers
took 44.6% less time debugging the real bugs when they had the
diagnostic information provided by Triage (13.468±3.984 minutes
versus24.298 ± 3.458 minutes). A paired T-test shows that this
is significant at the 99.99% confidence interval (p = .0000511),
indicating that the hypothesis that Triage reduces the time to fix
bugs is very strongly supported by the data. The results for the
toy bugs are less, as programmers saved 18.4% (9.690 ± 1.876
minutes versus11.877± 1.096 minutes), with significance at 95%
confidence (p = .0486); although Triage still helped, the effect was
not as large since the toy bugs are very simple and straightforward
to diagnose even without Triage.

Less formally, the study participants reported that the Triage re-
ports were a significant aid in helping them understand the bugs.
By observation, the BC bug was particularly tricky; several of the
control group went on time consuming goose chases through auto-
generated parser code which, although close in time to the bug, was
unrelated. In contrast, one participant said that “[the Triage report]
pointed out the error right away. Most of my time was spent in
getting the program to compile and run.”

Overall, Triage has a large, statistically significant effect on pro-
grammers’ diagnosis time. While there are many factors that can
affect the accuracy of a user study (sample representativeness, sam-
ple set size, etc.), we believe that these results still provide strong
evidence about the usefulness of Triage in helping programmers
diagnose software failures.

10. RELATED WORK

Software Failure Offline Diagnosis.
As discussed in Section 1, most existing software failure diagno-

sis focus on offline tools that provide some assistance but still rely
heavily on programmers to manually determine the root cause of
a failure. Such tools include interactive debugging tools [10], pro-
gram backward and forward slicing [1, 45, 48], deterministic replay

tools [14, 41], and delta debugging techniques [21, 47] (described
briefly in Section 4).

Triage has a two-fold relation to the above work. First, Triage
differs by focusing ononsitediagnosis during production runs at
end-user sites. Therefore, it must be fully automatic and impose
low overhead during normal execution; many of the above tech-
niques do not satisfy these constraints. Second, Triage can incorpo-
rate many of the above techniques and bypass their high overheads
by employing them only during diagnostic replay.

Onsite Failure Information Collection.
Most existing work on onsite failure information collection has

been discussed in the Introduction. While these techniques are
helpful for postmortem analysis, they are still limited, leaving the
majority of the diagnosis task to programmers. Moreover, these
coredumps or execution traces may not be made available by end-
users due to privacy and confidentiality concerns.

Triage differs from and also well complements the above work
because it provides failure diagnosis at the end-user site. When a
failure occurs, Triage automatically follows the human-like, top-
down error diagnosis protocol without any user or programmer in-
volvement. Moreover, by performing the diagnosis right after a
failure at the end-user site, Triage can effectively use of all failure
information without violating the end user’s privacy concerns.

Dynamic Software Bug Detection.
Our work is related to and well complemented by dynamic soft-

ware bug detection tools, such as Purify [11]. While these tools ef-
fectively detect certain types of bugs during in-house testing, most
of them impose large overheads (up to 100X slowdowns) unsuit-
able for production runs on end-user sites. Fortunately, by using
our Triage framework, many of them can be dynamically plugged
in as needed during diagnostic replay after a failure occurs, when
overhead is no longer such a concern.

Moreover, Triage goes beyond dynamic bug detection. It also
uses other error diagnosis techniques like the input tester, environ-
mental manipulator, delta generation, delta analyzer, coredump an-
alyzer and backward slicer to collect more diagnostic information.
It is important to fully understand a failure since the errors detected
by dynamic bug detectors are not necessarily root causes [1, 45,
48].

Checkpointing and Reexecution.
Triage is related to previous checkpointing system such as Zap

[29], FlashBack [41], Rx [32], and TTVM [14], just to name a
few, most of which are used for recovery or interactive debugging.
Triage uses checkpoint, rollback, and reexecution for a very dif-
ferent purposes — onsite software failure diagnosis. Different de-
sign goals lead to several major, important differences in research
challenges, design and implementations issues. Among the many
differences, the most significant one is that the proposed project
needs to perform various failure analysis to obtain failure informa-
tion and find clues about production-run failures onsite. As dis-
cussed in Section 2, even for checkpoint and reexecution, our pro-
posed project has different requirements, namely all side effects
are sandboxed, no need to deal with output commit problems and
allowing speculative reexecution such as forcefully skipping code
and modifying variables.

Distributed Systems Fault Localization.
Recently some research efforts have been devoted to pinpoint-

ing faults (failures [6] and performance problems [2]) in distributed

systems. These techniques support onsite diagnosis but the granu-
larity of the fault information provided is much coarser (usually at
component level) than what Triage provides. Triage complements
these tools to provide more detailed diagnosis.

11. CONCLUSIONS AND FUTURE WORK
This paper presents an innovative approach for diagnosing soft-

ware failures. By leveraging lightweight checkpoint and reexecu-
tion techniques, Triage captures the moment of a failure, andau-
tomaticallyperforms diagnosis at the end user’s site. We propose
a failure diagnosis protocol, which mimics the debugging process
a programmer would take. Additionally, we propose a new online
diagnosis techniques,delta analysis, to identify failure-triggering
conditions, related code, and variables. Beyond onsite diagnosis,
Triage is also helpful for in-house debugging. By performing the
initial steps speedily and automatically, Triage can free program-
mers from some labor intensive parts of debugging.

While Triage provides an important first step towards onsite fail-
ure diagnosis, there is more work to be done, as discussed in detail
in Section 7. Currently we are improving Triage to deal with false
positives, through improved confidence ranking and cross corre-
lation of results. Also, we are extending Triage with additional
bug-detection, fault analysis tools, and lightweight fault-based sen-
sors, as well as refining the delta generation and delta analysis tech-
niques. Finally, we are considering how to extend Triage to support
diagnosis of distributed applications.

12. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their useful feedback, as

well as the shadow PC reviewers. We also thank our shepherd,
Peter Chen, for his guidance in preparing the final version. Thank
you to all of the volunteers for the human study, for all of the time
collectively spent debugging.

This material is based upon work supported in part by the Na-
tional Science Foundation under Grant Nos. 0325603, 0347854,
and 0615372, by the Department of Energy under Grant No. DE-
FG02-05ER25688, and by Intel Gift grants. Joseph Tucek was
awarded an SOSP student travel scholarship, supported by Hewlett-
Packard, to present this paper at the conference.

13. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An

execution-backtracking approach to debugging.IEEE
Software, 8(3):21–26, 1991.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. InProceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[3] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory
safety for unsafe languages. InProceedings of the ACM
SIGPLAN 2006 Conference on Programming Language
Design and Implementation, 2006.

[4] D. L. Bruening.Efficient, transparent, and comprehensive
runtime code manipulation. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2004.
Supervisor-Saman Amarasinghe.

[5] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based
signatures. InProceedings of the 2006 IEEE Symposium on
Security and Privacy, 2006.

[6] M. Chen, E. Kiciman, E. Fratkin, A. Fox, , and E. Brewer.
Pinpoint: Problem determination in large, dynamic systems.

In Proceedings of the 2002 International Conference on
Dependable Systems and Networks, 2002.

[7] G. Clarke. How to diagnose and solve software errors.PC
World, 1999.

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. InProceedings of the 20th ACM
Symposium on Operating Systems Principles, 2005.

[9] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. InProceedings of the
2006 USENIX Annual Technical Conference, 2006.

[10] GNU. Gdb: The gnu project debugger.
[11] R. Hastings and B. Joyce. Purify: Fast detection of memory

leaks and access errors. InProceedings of the 1992 USENIX
Winter Technical Conference, 1992.

[12] M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2004.

[13] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. InProceedings of the
13th USENIX Security Symposium, 2004.

[14] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proceedings of the 2005 USENIX Annual Technical
Conference, 2005.

[15] C. Kreibich and J. Crowcroft. Honeycomb: Creating
intrusion detection signatures using honeypots.SIGCOMM
Computer Communication Review, 2004.

[16] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProceedings of the
ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

[17] D. E. Lowell and P. M. Chen. Free transactions with Rio
Vista. InProceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. InProceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementation, 2005.

[19] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.
PSE: Explaining program failures via postmortem static
analysis.SIGSOFT Software Engineering Notes,
29(6):63–72, 2004.

[20] Microsoft Corporation. Dr. Watson overview.
[21] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging.

In Proceedings of the 28th International Conference on
Software Engineering, 2006.

[22] mozilla.org. Quality feedback agent.
[23] E. W. Myers. An O(ND) difference algorithm and its

variations.Algorithmica, 1(2):251–266, 1986.
[24] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:

Continuously recording program execution for deterministic
replay debugging. InProceedings of the 32nd Annual
International Symposium on Computer Architecture, 2005.

[25] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. InProceedings of the

29th Annual ACM SIGPLAN - SIGACT Symposium on
Principloes of Programming Languages, 2002.

[26] N. Nethercote and J. Seward. Valgrind: A program
supervision framework.Electronic Notes in Theoretical
Computer Science, 2003.

[27] R. H. B. Netzer and B. P. Miller. Improving the accuracy of
data race detection. InProceedings of the 3rd ACM
SIGPLAN Symposium on Principles & Practice of Parallel
Programming, 1991.

[28] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InProceedings of the 12th
Annual Network and Distributed System Security
Symposium, 2005.

[29] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of Zap: A system for migrating computing
environments. InProceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002.

[30] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif.
Misleading worm signature generators using deliberate noise
injection. InProceedings of the 2006 IEEE Symposium on
Security and Privacy, May 2006.

[31] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting
ECC-Memory for detecting memory leaks and memory
corruption during production runs. InProceedings of the
11th International Symposium on High-Performance
Computer Architecture, 2005.

[32] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
bugs as allergies — A safe method to survive software
failures. InProceedings of the 20th ACM Symposium on
Operating Systems Principles, 2005.

[33] B. Randell. Facing up to faults.The Computer Journal, 2000.
[34] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and

W. S. Beebee, Jr. Enhancing server availability and security
through failure-oblivious computing. InProceedings of the
6th USENIX Symposium on Operating Systems Design and
Implementation, 2004.

[35] A. C. Rosander.Elementary Principles of Statistics. D. Van
Nostrand Company, 1951.

[36] A. Sabelfeld and A. Myers. Language-based
information-flow security. InIEEE Journal on Selected
Areas in Communications, 2003.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs.ACM Transactions on Computer
Systems, 15(4), 1997.

[38] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a reactive immune system for software
services. InProceedings of the 2005 USENIX Annual
Technical Conference, Apr 2005.

[39] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. InProceedings of the 6th USENIX
Symposium on Operating System Design and
Implementation, 2004.

[40] B. So, B. P. Miller, and L. Fredriksen. An empirical study of
the reliability of unix utilites.
http://www.cs.wisc.edu/˜bart/fuzz/fuzz.html.

[41] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. InProceedings
of the 2004 USENIX Annual Technical Conference, 2004.

[42] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos,
D. Brumley, Y. Zhou, and D. Song. Sweeper: A lightweight
end-to-end system for defending against fast worms. In
Proceedings of the 2007 EuroSys Conference, 2007.

[43] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,
J. Lee, Y.-M. WAng, and R. Roussev. Flight data recorder:
Monitoring persistent-state interactions to improve systems
management. InProceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, 2006.

[44] H. J. Wang, J. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Peerpressure for automatic troubleshooting. InProceedings
of the International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2004.

[45] M. Weiser. Programmers use slices when debugging.
Communications of the ACM, 25(7):446–452, 1982.

[46] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder”
for enabling full-system multiprocessor deterministic replay.
In Proceedings of the 30th Annual International Symposium
on Computer Architecture, 2003.

[47] A. Zeller. Isolating cause-effect chains from computer
programs. InProceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, 2002.

[48] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. InProceedings of the 25th International
Conference on Software Engineering, 2003.

