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Abstract

As increasingly larger memories are used to bridge the
widening gap between processor and disk speeds, main mem-
ory energy consumption is becoming increasingly dominant.
Even though much prior research has been conducted on
memory energy management, no study has focused on data
servers, where main memory is predominantly accessed by
DMAs instead of processors.

In this paper, we study DMA-aware techniques for mem-
ory energy management in data servers. We first character-
ize the effect of DMA accesses on memory energy and show
that, due to the mismatch between memory and I/O bus band-
widths, significant energy is wasted when memory is idle but
still active during DMA transfers. To reduce this waste, we
propose two novel performance-directed energy management
techniques that maximize the utilization of memory devices
by increasing the level of concurrency between multiple DMA
transfers from different I/O buses to the same memory device.

We evaluate our techniques using a detailed trace-driven
simulator, and storage and database server traces. The results
show that our techniques can effectively minimize the amount
of idle energy waste during DMA transfers and, consequently,
conserve up to 38.6% more memory energy than previous ap-
proaches while providing similar performance.

1 Introduction

As shown in many previous studies [16, 17, 18], main
memory is one of the largest energy consumers in high-end
servers, such as data servers (including file, storage, and
database servers) in data centers. Measurements from real
server systems show that memory can consume 50% more
power than processors [17]. In fact, memory energy consump-
tion will become increasingly dominant as increasingly larger
memories are used to bridge the widening gap between pro-
cessor and disk speeds. For example, the most recent EMC
Symmetrix DMX3000 storage system can be configured to
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have up to 256 GB of main memory [8], and the IBM eSeries
p5 595 server (the one that provides the best TPC-C perfor-
mance in the world) is configured with 2 TB of main mem-
ory [13] to avoid accessing disks. As a result, memory energy
consumption will soon become dominant in data servers.

Even though much research has been conducted on mem-
ory energy management [1, 6, 15, 16, 18, 25], most of the
previous works studied only computation-centric applications,
such as SPEC benchmarks or multimedia applications. To
the best of our knowledge, no prior studies have considered
the memory accesses generated by network and disk DMAs,
which are the dominant accesses in data servers.

The memory accesses made by DMAs are different from
those made by processors and therefore have different impli-
cations for memory energy management. Most DMA trans-
fers usually have large size such as multiple data blocks of size
512 bytes (disk sector size) or 8 KBytes (page size), whereas
each memory access from processors involves a single cache
line. As a result, a DMA transfer requires the accessed mem-
ory device to be in active mode for a relatively long period
of time, as compared to processor-generated accesses. Con-
sequently, the memory energy consumption due to DMA ac-
cesses is less sensitive to the length of idleness thresholds
and the energy and time overheads of power mode transitions,
which have been the main topics of previous research on mem-
ory energy management. The energy wasted waiting and then
transitioning power modes is only a small fraction of the total
memory energy consumption, as shown in Figure 2(b).

In contrast, DMA accesses have a different type of energy
waste as each DMA operation is broken into a large number
of small memory accesses, which are referred to in this paper
as DMA-memory requests for simplicity. Due to the mismatch
between I/O bus and memory transfer rates, DMA-memory re-
quests cannot arrive at the memory device at the rate at which a
modern memory device can serve them. Further, the time gap
between any two DMA-memory requests is too short to justify
transitioning the memory device into low-power mode to con-
serve energy. As a result, energy is wasted when the memory
device stays in high-power mode waiting between every two
DMA-memory requests during a large DMA transfer.

To address this problem, we conduct the first study of
DMA-aware memory energy management. More specifi-
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Figure 1. Path of a read request in a typical stor-
age server.

cally, we first characterize the effect of DMA accesses on
memory energy consumption. To minimize memory en-
ergy waste caused by DMA accesses, we propose two novel
performance-directed DMA-aware memory energy manage-
ment techniques. Both techniques strive to maximize the uti-
lization of the memory active energy. The first technique does
this by temporally aligning DMA operations from different
I/O buses to the same memory device to sequence these op-
erations in lockstep, whereas the second technique lays pages
out in memory according to the logarithmic page popularity
curve commonly found in data server workloads to increase
the opportunity to temporally align DMA transfers.

We evaluate our techniques using a detailed trace-driven
simulator, and both synthetic traces and real traces collected
from a commercial database server (IBM DB2) and a real
storage server. The results show that our techniques can ef-
fectively minimize the amount of idle energy waste during
DMA transfers and, consequently, conserve up to 38.6% more
energy than previous techniques while still providing similar
performance. Our results also show the effect of workload and
hardware characteristics on memory energy conservation.

The rest of the paper is organized as follows. Section 2
briefly describes the background behind the paper. Section 3
discusses the effect of DMA transfers on memory energy con-
sumption. Section 4 describes our two techniques for DMA-
aware memory energy management. Section 5 presents our
evaluation methodology and simulation results. Section 6 dis-
cusses the difference between our techniques and prior related
work. Section 7 concludes the paper.

2 Background

In this section, we detail the path of different types of re-
quests in data servers, as well as the memory power model and
power management mechanisms we assume.

2.1 Access Path in a Data Server

Figure 1 shows the path of a read request for an 8-Kbyte
data block in a typical data server, using a storage server as
an example. When a read request arrives from the storage
area network (SAN), the processor first parses the request and
checks the index table of the main-memory buffer cache to see

Power State/Transition Power Time
Active 300mW -
Standby 180mW -
Nap 30mW -
Powerdown 3mW -
Active → Standby 240mW 1 memory cycle
Active → nap 160mW 8 memory cycle
Active → powerdown 15mW 8 memory cycle
Standby → Active 240mW +6ns
Nap → Active 160mW +60ns
Powerdown → Active 15mW +6000ns

Table 1. Power consumption and transition time
for different power modes.

if the requested block is currently cached. If it is, the proces-
sor initiates a network DMA operation to transfer the data out
directly from main memory to the SAN. If it is not, the pro-
cessor initiates a disk DMA operation to read the data from
disk to the main-memory buffer cache and then initiates a net-
work DMA operation to send the data out. The path of a write
request is similar but data flows in the reverse direction.

For every request, the main memory needs to service one or
two large DMA data transfers of 8 Kbytes. In many cases, es-
pecially in storage servers, processors only access meta-data,
such as index tables and requests, and does little processing of
the actual data. Since the meta-data is usually orders of mag-
nitude smaller than the actual data and can be placed in a sepa-
rate memory device managed using previous dynamic energy
management strategies, our work does not consider memory
accesses to meta-data.

Interestingly, in database servers, data in the buffer cache
are accessed by the processor as well as the DMA engines.
However, the granularity of accesses by the DMA engines
is significantly larger than that by processors. As previous
memory energy management strategies [16, 18] can handle
accesses by processors, our discussion will focus on memory
energy management for DMA operations, even though we still
discuss the coordination with processor-initiated accesses and
evaluate our ideas using traces that contain accesses by both
processors and DMAs.

2.2 Memory Power Model and Management
The power model we assume for the memory subsystem

is based on memory chips capable of operating in multiple
power modes. In particular, our model follows the specifica-
tions for Rambus DRAM (RDRAM) [22]. In RDRAM, each
memory chip can be independently set to an appropriate power
state: active, standby, nap, or powerdown. In active state, all
parts of the chip are active, whereas each low-power mode
only activates certain parts of the memory circuitry [22]. Data
is preserved in all power modes. More details about the work-
ings of these modes can be found elsewhere [22, 23].

An RDRAM chip must be in active mode to perform a read
or write operation. Accesses to chips in low-power operat-



ing modes incur additional delay and energy for bringing the
chip back to active state. The delay varies from several cycles
to several thousand cycles, depending on which low-power
state the chip is in. Table 1 lists the power states, their power
consumptions, as well as their transition costs back to active
mode. These numbers are the same as those in [18], which
were obtained from the latest RDRAM specifications [22].

Previous research on memory energy management [16, 18]
has explored when to send memory devices to which low-
power modes. These techniques can be divided into two
classes: static and dynamic. Static techniques always put a
device in a fixed low-power mode. The device only transitions
back into full-power mode if it needs to service a request. Af-
ter a request is serviced, it immediately transitions back to the
original mode, unless there is another request waiting. In con-
trast, dynamic techniques transition a device from the current
power mode to the next lower power mode, after being idle
for a specified threshold amount of time (different thresholds
are used for different power modes). The threshold is usually
set based on the break-even time [16] or dynamically adjusted
based on the memory accesses from processors.

As previous studies [16, 18] show that dynamic schemes
can conserve more energy than static schemes, our study fo-
cuses on dynamic management in our evaluation, even though
our DMA-aware memory energy management techniques can
be applied to both static and dynamic management.

3 Energy Implications of DMA Transfers
In a data server, DMA transfers are usually very large. As

mentioned in Section 1, each transfer is broken down into
many small DMA-memory requests whose sizes depend on
the transfer rate of the I/O bus.

The most popular I/O bus for high-end servers is the PCI-
X bus, which is the enhanced version of the standard PCI
bus. PCI-X allows a maximum frequency of 133 MHz and
is 8 bytes wide, giving a maximum data transfer rate of 1.064
GB/s. In contrast, modern memory chips are capable of trans-
ferring data at much higher rates. For example, transfer rates
of DDR SDRAMs are up to 2.1 GB/s, and those for RDRAMs
are up to 3.2 GB/s.

The mismatch between I/O bus and memory transfer rates
is likely to continue, as the main memory transfer rate has
been increasing at a steady pace to address the gap between
processor and memory speeds, while the I/O bus transfer rate
is improving at a lower rate.

Due to this mismatch, a DMA engine cannot place DMA-
memory requests on the I/O bus at the rate at which a memory
chip can serve them. As a result, the memory chips need to
stay in high-power mode for more cycles than necessary to
serve a DMA-memory request and thereby waste energy.

Figure 2(a) shows this phenomenon. The most recent
RAMBUS chip [22] runs at 1600 MHz frequency and each
memory module is capable of transferring 2 bytes per cycle,
thus providing a peak transfer rate of 3.2 GB/s (a factor of

three more than the bandwidth of a PCI-X bus). The RAM-
BUS memory bus is also able to provide this peak bandwidth.
Since a large DMA transfer is broken into DMA-memory re-
quests of 8 bytes each, a memory chip can serve each request
in only 4 memory cycles. As the PCI-X bus runs at a lower
speed, the next request for 8 bytes arrives at the memory chip
8 cycles later. During these 8 cycles, the memory chip is idle
but cannot transition to a low-power mode since the idle pe-
riod is too short to justify the transition [16, 18]. As a result,
two-thirds (8 out of 12 cycles) of the active memory energy are
wasted. The analysis with other modern memory technologies
such as SDRAM is similar but with different absolute numbers
(because current DDR SDRAM technology can only provide a
2.1GB/s transfer rate), and Section 5.4 will discuss the effects
of memory architecture differences.

Many high-end servers use several I/O buses to achieve a
higher I/O transfer rate. For example, Intel’s chipsets E8870
and E7500 [14] have support for multiple PCI buses. When
DMAs on multiple I/O buses access the same memory chip
simultaneously, the waste of active memory cycles is reduced
because the memory chip can multiplex between the various
I/O buses.

However, since the various I/O devices do not coordinate
with each other in accessing the memory bus, having sev-
eral I/O buses does not fully eliminate the cycle waste. In
fact, even when multiple DMA transfers from different I/O
buses are directed to the same memory chip, they are typically
skewed in time and do not create enough overlap to maximize
the utilization of the memory active cycles.

This observation is confirmed in Figure 2(b), which shows
the distribution of memory energy spent in various modes in
a system with three PCI-X buses, according to our detailed
trace-driven simulations. For energy management, our sim-
ulations assume the dynamic scheme described by Lebeck et
al [16]. (We have also tried other schemes, such as the self-
tuning dynamic schemes proposed in our previous work [18],
but the results were similar since the large size of DMA trans-
fers makes memory energy consumption almost insensitive to
the threshold setting.) The details of the workloads and the
simulation infrastructure are described in Section 5.1.

The memory energy breakdown shows that a significant
amount (48-51%) of the energy is spent when idle in active
mode between successive DMA-memory requests of a large
DMA transfer operation. In fact, this energy waste is larger
than the amount of energy (26-27%) spent when actually ac-
cessing memory. In contrast, the energy waste due to waiting
for the specified threshold of idle time is only 3-4%.

These results are intuitive since each DMA transfer keeps
the accessed memory chip active for a long period of time,
a significant fraction of which is wasted between successive
DMA-memory requests as shown in Figure 2(a). For exam-
ple, a 512-byte DMA transfer over a PCI-X bus keeps a 1600-
MHz RDRAM memory chip active for 768 (64 × 12) mem-
ory cycles. In contrast, the best setting of the threshold value



DMA
request

Memory
active 
serving

Memory
active idle
(energy wasted)

DMA
request

… …

one DMA transfer

(a)

0

20

40

60

80

100

120

OLTP-St Synthetic-St

active Idle DMA

active idle threshold

active serving

transition

Low  pow er modes

(b)

Figure 2. (a) Time line showing that the accessed memory chip is idle for two-thirds of the time when
serving a DMA transfer. (b) Memory energy breakdown for two workloads. The up-downs denote memory
cycles, not power mode transitions. “Active Serving” denotes that the memory is actively serving DMA-memory requests; “Active
Idle DMA” denotes that the memory is in active mode but idle between two DMA-memory requests, because the DMA cannot issue
requests as fast as the memory chip can serve them; “Active Idle Threshold” denotes that the memory is idle in active mode until a
threshold of idle time passes before transitioning into low power modes; “Transition” denotes the energy consumed in transitioning
between power modes; “Low Power Modes” denotes the energy consumed in low-power modes.

for transitioning a memory chip from active into low-power
modes is usually around 20-30 memory cycles. As a result,
the energy waste between successive DMA-memory requests
due to the transfer rate mismatch is much larger than that due
to idle thresholds.

4 DMA-Aware Memory Energy Management
We propose two techniques to reduce the amount of active

idle energy wasted between DMA-memory requests. Both
techniques exploit the multiple I/O buses in modern data
servers to maximize the utilization of the memory-active en-
ergy without excessively degrading performance, even in the
presence of processor-initiated requests as well. In essence,
their goal is to make the DMA-initiated memory accesses
more energy-efficient. However, it is still the responsibility of
the lower level memory energy management policy, such as
the dynamic policy from [16], to manage the actual memory
power states.

Note also that both techniques operate on physical pages
and, therefore, do not affect the page-fault ratios of data
servers. Additionally, as they work at a time granularity that is
much smaller than the request service time or the power-mode
transition overhead of disk and network devices, they do not
increase the energy consumed by these devices.

The next two subsections describe our techniques in detail.
For simplicity of our description, when describing each tech-
nique, we first present it assuming DMA transfers only, then
discuss the coordination with processor-initiated accesses, and
finally discuss their complexity and overheads.

4.1 Temporal Alignment of DMA Transfers

4.1.1 Main Idea

The first technique, called Temporal Alignment (DMA-TA),
reduces the amount of active energy waste between DMA-
memory requests by temporally aligning requests from dif-
ferent I/O buses to the same memory chip. Specifically, the
memory controller delays DMA-memory requests directed to

a memory chip in low-power mode, trying to gather enough
requests (from other I/O buses) to fully utilize the memory
chip active cycles, instead of avoiding power-mode transition-
ing as previous works on request batching to reduce disk or
network energy consumption [7, 11]. When enough DMA-
memory requests have been gathered or the access delay ex-
ceeds a threshold value, the controller allows the requests
through, enabling the memory chip to service the requests
back-to-back. Since the first request of a DMA transfer may
be delayed and not immediately acknowledged by the mem-
ory controller to the DMA engine, subsequent requests of the
same DMA transfer operation will not be issued.

Interestingly, after this first gathering of requests, all sub-
sequent requests from the different I/O buses to the chip will
be sequenced in lockstep; until the end of the entire DMA
transfers, the chip will remain active and requests will not be
delayed again. (Similarly, when a new DMA transfer starts
while others are already in progress, its requests are not de-
layed at all.) The reason is that the time gap between any two
adjacent DMA-memory requests of the same DMA transfer is
usually fixed as the corresponding DMA engine moves data
from or to the memory. As a result, all the DMA transfers be-
come properly aligned (interleaved) with each other. This is
one of the key differences between DMA-TA and traditional
request batching [7, 11].

Figure 3 illustrates the case in which the controller is able
to gather enough requests to fully utilize the memory chip. In
this example, the first three DMA-memory requests, namely
DMA11, DMA21 and DMA31, that arrive from different I/O
buses are not serviced right away; the chip remains in what-
ever low-power mode it currently is. When the fourth request,
DMA41, arrives, the memory chip is activated and allowed
to start servicing one request right after the other, wasting no
memory cycles. For all these four DMA transfers, subsequent
DMA-memory requests, DMAij (i = 1 . . . 4 and j > 1), are
in lockstep and are not delayed at all.

The delaying of DMA-memory requests to a memory chip
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in a low-power mode can be implemented by temporarily
buffering the requests in the memory controller. As described
later, DMA-TA does not delay too many requests for per-
formance reasons, so the space requirement to temporarily
buffer these delayed requests is very small. For example, for
a system with 1 GB of main memory consisting of 32 32-MB
memory chips and the same memory and I/O bus bandwidths
as in Figure 2, the memory controller requires at most 768
(3× 8 × 32) bytes of buffer space to support request delays.

In contrast to DMA-TA, a simple alternative that only
buffers requests on the I/O-device side of PCI bus would not
suffice to meet our goals. First, buffering DMA-memory re-
quests to different memory chips is not useful to conserve
memory energy. Second, buffering depends on the current
mode of the target memory chip. If the target chip is already
actively serving one or more DMA transfers, there is no need
to delay new DMA-memory requests. Due to these reasons,
DMA-memory request buffering should be done by the mem-
ory controller and for each memory chip.

4.1.2 Performance Guarantees

Having described the main idea behind DMA-TA, we now de-
termine how long the memory controller can delay the DMA-
memory requests directed to a memory chip. Obviously, there
is no need to collect more DMA-memory requests to each
memory chip than necessary to achieve full utilization of the
chip. More interestingly, due to performance concerns, we
cannot delay a DMA-memory request (and its corresponding
DMA transfer) indefinitely in order to achieve full utilization.

To address this problem, DMA-TA provides a soft
performance guarantee for each DMA-memory request.
Specifically, it takes an application-specified performance-
degradation parameter µ, such that if the average service time
for a DMA-memory request is T without temporal alignment
and power management, it should be no worse than (1 + µ)T
with temporal alignment and power management. T can be
determined from the memory manufacturer or measured off-
line on a real system that uses the same memory chips. The
value of µ can be computed by the application designer based
on the end-user service-level agreement, which specifies the
client-perceived average response time for each client request.
For example, the application designer can conduct various
measurements (using a method similar to that in [2]) to find

out the correlation between DMA-memory request service
time and the client-perceived average response time. For the
purposes of this paper, we assume that µ is a user-provided
input parameter.

For the sake of describing the performance-guarantee algo-
rithm, let us assume that the sustained transfer rate of main
memory is Rm, and that the transfer rate for each I/O bus is
Rb. Let the number of I/O buses be r. Further, assume that
there are more than Rm/Rb I/O buses, i.e. r > Rm/Rb. This
assumption is not essential to our algorithm and we make it
only for simplicity of description. Let k be the number of I/O
buses that can achieve the same bandwidth as the main mem-
ory, i.e. k = dRm/Rbe. If the memory controller can group
requests from k I/O buses to the same chip, all of its active
cycles will be utilized in transferring data. Thus, the memory
controller does not need to delay any longer than the time to
gather k DMA-memory requests for the same memory chip.

However, it may take excessively long for k such requests
to arrive. DMA-TA dynamically determines how long it can
wait based on the available total delay, Slack, which denotes
the total sum of the delays that all requests are allowed with-
out violating the performance guarantee. For example, if l re-
quests have been received so far, we would have lµT as the to-
tal slack in order to guarantee that the average DMA-memory
request service time is within the specified limit (1 + µ)T . A
negative value of Slack denotes that the desired performance
level is not being maintained. Note that Slack is not meant
to represent a level of degradation to end-performance, which
would require consideration of request parallelism. Instead,
Slack is just the sum of the slacks for each request to pro-
vide a performance guarantee for the average DMA-memory
request service time.

The amount of slack currently available is updated as fol-
lows. Upon the arrival of a new DMA-memory request,
the memory controller adds an amount µT of credits to the
slack. The controller reduces the slack as requests are delayed
by DMA-TA, power-mode transitions, or processor-initiated
memory accesses (we discuss these accesses in the next sub-
section). The slack reductions due to DMA-TA are done by
dividing the execution into time intervals or epochs. At the be-
ginning of each epoch, Slack is reduced by epochLength×n,
where n is the number of pending DMA-memory requests that
are waiting to be serviced and epochLength is the length of



the epoch. (As we only use epochLength for delay account-
ing instead of energy management, we find that our results
are insensitive to this parameter setting as long as it is not
too large.) Intuitively, this approach pessimistically decreases
Slack assuming that all requests will be delayed by the en-
tire duration of the epoch. Although a worst-case assumption,
it makes sure that DMA-TA will not violate the performance
guarantee. Furthermore, this approach obviates the need for
the controller to update Slack after every request. The slack
reductions due to power-mode transitions are done by decreas-
ing Slack by the time overhead of activating each memory
chip (different chips might be in different power modes) times
the number of requests pending for it.

Given the current available slack, DMA-TA can dynami-
cally calculate how long a DMA-memory request that finds
the corresponding memory chip in low-power mode can wait.
Suppose that there are ni pending DMA-memory requests
from the ith I/O bus for i = 1, 2, . . . , r (each pending request
coming from an I/O bus has been issued by a different DMA
engine attached to the bus). Let m = max{ni | 1 ≤ i ≤ r}.
Under these assumptions, U = mT dr/ke represents an upper
bound on the time taken to service all the pending requests.
To see this more clearly, recall that each DMA-memory re-
quest takes T time when no alignment or power management
is performed. Since k requests from different I/O buses can
be performed in the way shown in Figure 3, k such requests
will also take time T . Next, we can divide all pending DMA-
memory requests into dr/ke groups such that requests in each
group are from different I/O buses. Since each group has at
most mk requests, each group can be served in mT time.

Given the value for U , if the memory started to service re-
quests now, the average additional delay per pending request
would be U/2. (Note that early delays are charged via the
epoch-based scheme. Here, we only need to charge the queu-
ing delay.) The reason is that the first request serviced would
incur zero additional delay, the second one would incur T ad-
ditional delay, and so on. Based on this observation, a simple
mathematical calculation computes the average additional de-
lay of U/2. Thus, the total delay for all n pending requests
would be nU/2. Therefore, the memory chip should start
serving requests when nU/2 is close to the current Slack to
avoid exceeding the acceptable performance degradation.

Our extensive simulations confirm that this approach en-
forces our performance guarantees. In fact, none of the simu-
lations discussed in Section 5 violates such guarantees.

4.1.3 Interaction with Accesses from Processors

DMA-TA may interfere with accesses from processors only
when the memory chip is servicing DMA-memory requests.
More specifically, when requests are aligned to achieve max-
imum utilization of the memory-active cycles, there are no
cycles left to handle accesses from processors. There are at
least a couple of possible solutions to this problem. A simple
solution is to always allow accesses from processors to take
priority over DMA accesses. In other words, a memory chip

always services accesses from processors first, before servic-
ing accesses from DMAs. Another solution is to keep the ac-
tive memory cycles at most x% (e.g. 75%) utilized for DMA-
memory requests so that the remaining 1 − x% (e.g. 25%) is
reserved for accesses from processors. In our evaluation, we
use the first method.

Regardless of the solution, processor accesses need to be
reflected in the remaining amount of available slack for DMA-
memory requests. The way we perform these updates is to
decrease Slack by the time it takes for the processor accesses
to be serviced times the number of DMA-memory requests
pending for the corresponding memory chip.

4.1.4 Complexity and Overheads

DMA-TA can be implemented in memory controllers with
even little processing power. Many memory controllers (e.g.,
the Impulse memory controller [24]) already contain low-
power processors. Specifically, DMA-TA needs to count the
number of pending DMA-memory requests for each memory
chip, which requires only one counter per chip. DMA-TA also
needs to maintain a counter for the total available slack, which
is updated at the beginning of each epoch and after processor-
initiated accesses. Whenever a DMA-memory request arrives
that finds the corresponding memory chip in low-power mode,
DMA-TA needs to compare nU/2 with the current value of
Slack to decide whether the memory chip should start servic-
ing all pending DMA-memory requests. Such an operation re-
quires only one addition and one comparison, since U/2 can
be pre-computed and nU/2 can be computed incrementally
using one addition every time a new request arrives. Further-
more, this overhead is amortized over the large DMA transfer;
subsequent DMA-memory requests do not perform this com-
parison, since they are serviced right away when the memory
chip is already in active mode. Finally, the controller needs a
little buffer space for delayed requests.

4.2 Popularity-based Layout

4.2.1 Main Idea

To increase the opportunity for DMA-TA to reduce memory
energy waste, our second technique, called Popularity-based
Layout (PL), exploits a common access pattern, namely the
“20-80 rule” of many data server workloads. Specifically,
many of these workloads exhibit considerable skew of ac-
cesses towards a small fraction of the blocks. In other words,
a majority of accesses are made to a small fraction of the data.
For example, Figure 4 shows the access distribution for an
OLTP storage DMA transfer trace collected from a real stor-
age server. As shown in the figure, around 20% of the pages
account for 60% of the DMA accesses to the main memory of
the storage server.

We can exploit this access pattern in workloads by cluster-
ing frequently accessed pages in a small subset of the mem-
ory chips, so that more concurrent DMA transfers can arrive
at such memory chips and the number of isolated transfers at
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other chips can be reduced. The reason this layout increases
the DMA-TA energy savings is that the memory controller can
temporally align more DMA-memory requests directed to-
wards the “hot” memory chips. Further, the number of DMA-
memory requests to “cold” chips is reduced, allowing them to
stay in low-power modes for a longer period of time. As a
result, the overall memory energy consumption is reduced.

To identify hot pages, our PL technique uses a few bits to
keep track of the DMA reference counts (number of accesses
by DMAs instead of processors) for each memory page. The
reference counts can be maintained either inside the memory
controller or as a part of the page table. To adapt to workload
changes, these reference bits should be “aged” periodically by
either resetting them to zero or right-shifting them by one.

Dynamically, the memory controller can build statistical
access distribution histograms to record the percentage of
pages with different popularity and the percentage of accesses
to pages with different popularity. Based on such histograms,
pages can be placed into memory chips according to their
popularity values. For example, let N be the total number
of memory chips. We divide the memory chips into multiple
groups. Let Nhot be the fraction of chips such that if the most
popular pages are put in the Nhot chips, they account for p
percentage (e.g. 60%) of the total number of DMA-memory
requests in the last epoch (time period), where p is a tunable
parameter. The remaining N − Nhot chips comprises the last
group, the “cold” group.

For the Nhot hot chips, we can further divide them into
K−1 groups, namely G1 with only 1 memory chip, G2 with 2
chips, G3 with 4 chips,. . . , GK−1 with 2blog(pNhot)c−2 chips.
The K-th group GK is the cold group. PL associates a pop-
ularity ordering among these K groups. We designate that
group Gi is more popular than Gj if i < j. Pages are placed
into groups according to their popularity values. Our group-
ing of pages in PL is a key difference between ours and previ-
ous popularity-based layout approaches, e.g. [21].

To adapt to workload changes, memory pages are reorga-
nized periodically by the memory controller via page migra-
tion. Page migration is based on dividing the execution of the

application into intervals (multiple epochs). At the beginning
of each interval, the layout is recomputed to maintain the same
invariant. The memory controller follows a simple algorithm
to perform the shuffling, such that the number of swaps re-
quired is less than or equal to the number of pages which are
in a group that does not match their popularity value. Pages
that are in the wrong group are migrated to the correct group
based on the new layout. For each page migration, its content
is first copied into a free page in the destination chip.

To avoid affecting the application, the memory controller
and the operating system need to cooperate. A simple method
would be for the memory controller to interrupt the proces-
sor whenever a page was migrated. The operating system
would then update the page table accordingly. However, this
approach would involve excessive overhead. To avoid this
overhead, the memory controller must store a small table of
< old_location, new_location > page translations. Before
the page table is modified, the memory controller simply redi-
rects accesses to the old location of a migrated page to its new
location. In this approach, the page table would only be mod-
ified when the translation table is completely filled or at the
end of the current interval. Thus, the cost of the interrupts and
the page table updates can be amortized across a number of
migrations. In fact, the amount of overhead can be adjusted
by increasing/decreasing the size of the translation table or
the length of the intervals. By adjusting these parameters, we
believe that this overhead can be made negligible, so our sim-
ulations do not account for it.

Since page migration incurs energy and time overheads,
maintaining a perfectly accurate popularity ordering would
be excessively expensive, offsetting the benefit of popularity-
based layout. This is one of the reasons that groups are not of
equal size. Instead, the sizes of the first K − 1 groups follow
an exponential curve in order to accommodate the popularity
distribution shown in Figure 4. The rationale is that pages
accessed 8 times are not necessarily “hotter” than pages that
have been accessed 10 times, for example.

Interestingly, we find that using only 2 groups provides the
best result in energy conservation given a specified perfor-
mance goal, making the PL technique simple to implement
with minimum page-migration traffic. The reason is that, with
only 2 groups, there are only a hot group for the pages that
contribute to a p percentage of accesses and a cold group for
all remaining pages.

4.2.2 Hiding Migration Energy and Time Overheads

Page migration may interfere with memory accesses from
DMAs and processors. One possible optimization is to per-
form page migration in small chunks, such as cache-line or 8-
byte chunks. The small granularity can leverage those mem-
ory cycles during which the involved memory chips are idle
in active mode either waiting for DMA-memory requests or
waiting to go down to low-power mode, so that they incur no
extra energy and time overhead. Furthermore, the page ac-
cesses can be performed by the memory controller itself with-



Trace Content Description
OLTP-St Memory accesses from network and

disk DMAs
Collected from a real storage server that is connected to a database
server running IBM DB2 with a TPC-C benchmark.

Synthetic-St Memory accesses from network and
disk DMAs

Synthetically generated based on distribution observed in real systems.

OLTP-Db Memory accesses from processors and
network DMAs

Collected from a real database server (IBM DB2) running on the Sim-
ics simulator [19] with Gems timing model [20], running a TPC-C
benchmark.

Synthetic-Db Memory accesses from processors and
network DMAs

Synthetically generated based on distribution observed in real systems.

Table 2. Traces used in our evaluation.

out involving the processor or any DMA engine. Currently,
these optimizations are still being implemented in our simula-
tor. When such optimizations are implemented, we expect our
results will be better than those we present in Section 5.

4.2.3 Complexity and Overhead

Similar to DMA-TA, PL can also be implemented in a sim-
ple way by smart memory controllers. The memory controller
needs to use a counter to record the number of DMA-memory
requests for each page during an interval. To reduce the space
requirement of these counters, we can increase the granularity
from a page to a memory region which may consist of tens
(e.g. 32) of pages. Also, we can remember the access counter
for only those recently accessed pages. These methods are
likely to work well since DMA transfers are usually at large
granularity with good temporal locality in memory addresses.
Each DMA-memory request requires a hash-based lookup by
the memory controller to find and increment the correspond-
ing page’s reference counter. Since subsequent requests of the
same DMA transfer are typically for the same page, a few re-
cently accessed counters can be kept in a small cache as short-
cuts for fast lookups and increments.

Finally, the memory controller needs to implement the mi-
gration algorithm and the table of page translations. The al-
gorithm only runs at the beginning of an interval. The table
of translations is similar to equivalent structures in previously
proposed smart memory controllers [24].

5 Evaluation Results
5.1 Methodology

We evaluate our DMA-aware memory energy management
techniques using an accurate trace-driven simulator that inte-
grates several component-based simulators including: (1) the
widely used disk-array simulator DiskSim [10], which models
disk accesses very accurately; (2) a trace-driven main mem-
ory simulator that models both timing and energy based on
the latest 512-Mb 1600-MHz RDRAM specification shown in
Table 1; and (3) a network and disk DMA simulator. The sim-
ulated system has 32 memory chips. We simulate three 133-
MHz 64-bit PCI-X buses attached to the memory bus. The
default DMA-memory request size is 8 bytes, whereas the de-
fault number of groups for PL is 2. Our simulator is driven by

memory access traces that include accesses from both proces-
sors and DMAs.

We use two sets of traces, each set representing a differ-
ent type of workload. The first set includes two memory ac-
cess traces representing memory workloads of storage servers.
These traces contain accesses from network and disk DMAs
only, because the processor in a typical storage server does
not do any processing of the data requested by clients. The
second set includes two memory access traces representing
memory workloads of database servers, which contain mem-
ory accesses from both processors and network DMAs. The
processor accesses are for 64-byte cache lines. Each set in-
cludes a trace collected from a real system and a synthetically
generated trace. The OLTP-St trace contains network and disk
DMA operations at average rates of 45.0 transfers/ms and 16.7
transfers/ms, respectively. The OLTP-Db trace has network
DMA operations and processor accesses at average rates of
100.0 transfers/ms and 23,300 accesses/ms, respectively. The
synthetic traces assume a Zipf distribution of page popularity
with α = 1, a Poisson DMA transfer arrival rate with an av-
erage of 100 transfers/ms, and a Poisson processor access rate
with an average of 10000 accesses/ms (Synthetic-Db only).
The synthetic traces allow us to easily vary the characteristics
of the workloads, as we do in Section 5.4. Table 2 summarizes
the characteristics of the four traces.

In our simulations, the dynamic memory energy manage-
ment scheme [16] is always used as the low-level memory en-
ergy management policy. Most of our results show the en-
ergy savings when this low-level policy is enhanced with our
DMA-aware energy management techniques. For this reason,
we refer to the system using the low-level policy only as the
“baseline” in this section.

Our results show the behavior of our techniques with re-
spect to the baseline, focusing on the effect of the acceptable
performance degradation, the workload intensity, the number
of processor-initiated memory accesses per DMA transfer, and
the ratio between memory and I/O transfer rates.

It is important to note that from now on we express the
acceptable performance degradation as the limit on the client-
perceived average response time degradation. As such, we
refer to it as CP-Limit. CP-Limit is a more intuitive and
meaningful value than µ (the acceptable degradation in the
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Figure 5. Memory energy savings by the DMA-aware techniques compared to the baseline low-level energy management. The
X-axis denotes the maximum client-perceived average response time degradation, whereas the Y-axis shows the percentage of energy
saving over the baseline (the dynamic energy management scheme [16]). The curves labeled “DMA-TA” show the results for DMA-TA
only, whereas those labeled “DMA-TA-PL” show the results when both of our techniques are used.

average response time of each DMA-memory request), the ac-
tual parameter that DMA-TA takes. We transform CP-Limit
into µ off-line by determining how much each DMA-memory
request would have to be slowed down to achieve a client-
perceived degradation of CP-Limit. Our results show that our
techniques never violate CP-Limit.

5.2 Overall Results

Figure 5 shows the percentage energy savings of our DMA-
aware techniques as a function of CP-Limit, compared to a
system that only uses the baseline policy. The graphs show re-
sults for DMA-TA-PL (the combination of DMA-TA and PL
schemes) using various numbers of popularity groups. All re-
sults for the DMA-TA and PL schemes provide performance
degradation within the specified CP-Limit limit. (Due to space
limitations, we do not show the actual performance degrada-
tion results here.) Because baseline does not provide any per-
formance guarantees, our techniques’ results are always com-
pared to the same baseline result.

From these graphs, it is clear that our DMA-aware tech-
niques can conserve significantly more energy than a memory
energy management policy that is oblivious to DMA trans-
fers. For example, DMA-TA-PL (with 2 groups) results in
38.6% less energy consumption than the baseline for a maxi-
mum 10% client-perceived response time degradation for the
OLTP-St workload. The reason is that DMA-TA-PL is very
effective at temporally aligning DMA transfers, thereby re-
ducing the amount of memory energy waste.

The results also show that DMA-TA-PL is very effective at
increasing the energy savings with respect to DMA-TA alone.
Take the OLTP-St workload as an example. DMA-TA alone
can achieve only moderate (6-24.8%) energy savings over
the baseline, whereas DMA-TA-PL can provide high (19.4-
44.5%) energy savings. The reason is that PL significantly
increases the opportunity for DMA-TA to gather more DMA-
memory requests to “hot” chips.

Interestingly, our results indicate that PL behaves best with
just 2 groups. Considering the OLTP-St workload and a CP-
Limit of 10% for example, we can see that DMA-TA-PL with
2 groups provides 38.6% energy savings over the baseline,

whereas it achieves only 33.4% and -15.2% savings with 3
and 6 groups, respectively. This effect is caused by the energy
and time overheads of page migration. With more groups, the
amount of page shuffling increases, offsetting the benefit of
PL. For this reason, from now on we only present DMA-TA-
PL results for 2 groups.

It is also important to note that, as CP-Limit increases, both
DMA-TA and DMA-TA-PL conserve increasingly more en-
ergy. This result was expected, since DMA-TA can delay
DMA-memory requests for a longer time, trying to gather
more of them. The increases in energy savings are substan-
tial up to 10% performance degradation. Beyond this point,
the energy savings increase much more slowly. The reason
is that, after enough requests have been gathered to achieve
maximum memory utilization, there is no benefit in delaying
requests longer. This behavior is actually quite different from
those of the request batching approaches studied in previous
work for processor or disk energy management.

Finally, these results show that our techniques behave
well regardless of whether the workload includes processor-
initiated memory accesses. In particular, the results for OLTP-
Db and Synthetic-Db show lower but still significant energy
savings, especially for DMA-TA-PL with 2 groups. Energy
savings are lower for database servers than for storage servers,
because processor-initiated accesses in the former servers con-
sume some of the idle cycles when the memory is active be-
tween DMA-memory requests. Overall, the trends we see are
exactly the same in both types of servers. For this reason, the
following subsections focus only on storage servers.

5.3 Analysis of Results

To further understand the reasons behind the energy sav-
ings produced by our techniques, we compare the memory
energy breakdowns of the baseline, DMA-TA, and DMA-TA-
PL schemes for 10% CP-Limit. As shown in Figure 6, while
the active energy spent on serving requests remains the same,
there is a significant reduction in the energy wasted when
chips are active but idle between successive DMA-memory
requests. As an additional benefit from our DMA-TA and PL



Figure 6. Energy breakdowns of OLTP-St with
10% CP-Limit. Each energy component has the same
meaning as in Figure 2(b), except for the migration energy
of DMA-TA-PL.
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Figure 7. Utilization factors of DMA-TA and
DMA-TA-PL for OLTP-St with 10% CP-Limit.

techniques, the number of power-mode transitions is also de-
creased, which leads to reduced transition energy. However,
this effect is essentially negligible in our results.

Comparing DMA-TA-PL with DMA-TA, we can see that
the former technique reduces the waste of active energy fur-
ther than the latter one. In fact, it is interesting to see that
the energy overhead of migration is more than offset by the
reduction in active energy waste.

As the main benefit of DMA-TA and PL comes from in-
creased concurrency and improved utilization of active mem-
ory cycles, we introduce a metric to measure these effects ex-
plicitly, the utilization factor (uf ):

uf =
Tuseful

Ttot

where Ttot is the total amount of time during which some
DMA transfer is in progress and so the accessed memory chips
are in the active mode. This includes the time between suc-
cessive DMA-memory requests for a given transfer operation.
Tuseful is the time during which the memory is actually serv-
ing some DMA-memory request. For example, if the memory
transfer rate is three times the transfer rate of the I/O bus and
no two DMA-memory requests are interleaved, uf = 0.33.
Clearly, the maximum value of uf is 1.

Figure 7 shows the utilization factors of DMA-TA and
DMA-TA-PL, as a function of CP-Limit. Without our DMA-
aware techniques, the utilization factors are only around
0.33, which means that 67% of the active memory energy is
wasted. In contrast, with DMA-TA-PL, the utilization factors
of OLTP-St are improved to 0.63 with 10% CP-Limit and 0.75
with 30% CP-Limit. These results indicate an improved uti-
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Figure 8. Energy savings as a function of
workload intensity for Synthetic-St.
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Figure 9. Energy savings as a function of
number of processor accesses per DMA
transfer for Synthetic-Db.

lization of active cycles. Similar to the energy savings of Fig-
ure 5, the utilization factors increase rapidly with CP-Limit at
first, but more slowly for CP-Limits larger than 10%.

5.4 Sensitivity Analysis

This subsection evaluates the sensitivity of our techniques
to workload and hardware characteristics. We use 10% CP-
Limit and our default parameters, unless otherwise specified.

Workload intensity. Figure 8 shows the effect of varying
the workload intensity of the Synthetic-St trace. We vary the
intensity by varying the average DMA transfer arrival rate.
Recall that our default average arrival rate in this synthetic
trace is 100 transfers/ms. The results show that DMA-TA
and DMA-TA-PL can save more energy over the baseline for
more intensive workloads. The reason is that more intensive
workloads provide more opportunity for request aligning to
reduce active energy waste. As one would expect, the benefit
of DMA-TA and PL increases more slowly at higher intensi-
ties, since some DMA transfers are already naturally aligned
in the baseline system at those intensities.

Intensity of processor accesses. A comparison between the
storage and database server results in Figure 5 shows that
processor-initiated accesses reduce the energy savings achiev-
able by our techniques. These accesses consume some of the
active idle energy that our techniques seek to eliminate.

Figure 9 illustrates this effect more clearly. The figure
shows the energy savings produced by DMA-TA and DMA-
TA-PL, as a function of the number of processor accesses
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Figure 10. Energy savings as a function of the
ratio between memory and I/O bus bandwidth.

(each to a 64-byte cache line) per DMA transfer. To gener-
ate the figure, we injected different numbers of processor ac-
cesses per DMA transfer into Synthetic-Db. The figure shows
that indeed energy savings drop significantly with an increase
in processor accesses. However, even when the number of
accesses is in the hundreds, the energy savings are still sig-
nificant. For comparison, the OLTP-Db trace collected from a
commercial database server (IBM DB2) has an average of 233
processor accesses per DMA transfer.

Ratio of memory and I/O transfer rates. Finally, we study
the effect of the ratio between memory and I/O transfer rates.
Recall that the results above assume that the I/O bus band-
width is 1 GB/s (the bandwidth of the PCI-X bus), and that
memory can transfer data at rate of 3.2 GB/s (the data rate of
RDRAM). So the ratio between the two is around 3.

Figure 10 shows the results for OLTP-St and Synthetic-St.
To vary the ratio, we kept the memory bandwidth fixed at 3.2
GB/s and varied the I/O bus bandwidth (0.5 GB/s, 1 GB/s,
2GB/s, and 3 GB/s). When the ratio is close to 1, i.e. the
memory and the I/O bus have about the same transfer rate,
DMA-TA and PL provide small (around 5%) energy savings,
which is expectable. As we increase the ratio, the amount of
energy conserved by DMA-TA and DMA-TA-PL also quickly
increases, since the active energy waste starts to dominate.
Because PL provides greater opportunities to align requests,
DMA-TA-PL improves faster than DMA-TA for higher ratios.

6 Related Work

This section discusses closely related works that are not de-
tailed in earlier sections. The discussion is divided into works
that relate to memory energy management in general, tempo-
ral alignment, and popularity-based layouts in the main mem-
ory and disks.

Memory energy management. In addition to the works de-
scribed in Sections 1 and 2, Fan et al. have investigated mem-
ory controller policies for determining chip power states based
on the estimated idle time between accesses [9]. Delaluz et
al. have studied compiler-directed [5] and operating-system-
based approaches [3] to conserve memory energy. Recently,
Huang et al. proposed a power-aware virtual memory imple-

mentation to conserve memory energy [12]. Li et al. consid-
ered performance-directed memory energy management [18].
Zhou et al. proposed using applications’ miss ratio curves to
direct memory energy management [25].

Our work differs from these prior works in that it focuses
on DMA-aware memory energy management, which is neces-
sary to conserve memory energy in data servers.

Temporal Alignment. Our DMA-TA technique shares
some similarity to request batching used in disk energy man-
agement [11] and processor energy management [7]. For ex-
ample, in [7], the requests sent to a Web server are batched
by the network interface card to increase host processor idle
times. DMA-TA differs from these works in two respects: (1)
Previous works batch request to minimize the energy and time
spent in powering devices up and down, whereas our tech-
niques increase the level of concurrency in DMA transfers by
sequencing multiple DMA operations in lockstep to reduce the
amount of energy waste due to the mismatch between memory
and I/O bus bandwidths; and (2) In previous works, it is typi-
cally beneficial to batch as many requests as possible as long
as performance is not significantly affected. In our techniques,
batching more requests than the maximum level of concur-
rency supported by the memory device has little benefit, since
the energy cost for transitioning between power modes is neg-
ligible compared to the energy consumption of a large DMA
operation, as we explain in Section 3.

Popularity-based Layout. Lebeck et al. have conducted a
preliminary investigation of popularity-based layouts to allow
some memory devices to stay in low-power modes for a longer
time [16]. Their results for SPEC benchmarks showed that a
popularity-based layout is not very helpful. Therefore, they
did not propose or evaluate a realistic popularity-based layout
strategy. Delaluz et al. have studied compiler and operating-
system-based strategies to place frequently accessed data to-
gether in a few memory modules again for scientific applica-
tions [3, 4, 5, 6]. A similar idea has been explored by Pin-
heiro and Bianchini in the context of disk array energy man-
agement [21], where popular files are migrated to a subset of
disks to skew the workload, and thus allow the remaining disks
to conserve energy.

Unlike the works that use popularity-based layouts to cre-
ate skewed loads on devices, we use such layouts for a differ-
ent purpose: to increase the opportunity for temporal align-
ment of DMA operations for data servers. As such, our
PL technique can be relatively simple and incur only small
overheads. Further, while previous work on popularity-based
memory layouts follows a strict popularity-based ordering,
our PL technique uses a logarithmic order based on the popu-
larity distribution characteristics of real workloads.

7 Conclusion

To the best of our knowledge, this paper is the first to
study memory energy management for DMA-initiated mem-
ory accesses. These accesses have different characteristics and



implications for energy management than processor-initiated
accesses. We characterized the effect of DMA accesses on
memory energy and showed that, due to the mismatch be-
tween memory and I/O bus bandwidths, significant energy
is wasted when memory is idle but still active during large
DMA transfers. To reduce this waste, we proposed two novel
performance-directed energy management techniques, tempo-
ral alignment and popularity-based layout, which increase the
level of concurrency between multiple DMA transfers from
different I/O buses to the same memory chip. Our results
on a detailed trace-driven simulator with storage and database
server traces showed that our techniques can effectively min-
imize the amount of idle energy waste during DMA transfers
and, consequently, conserve as much as 38.6% more memory
energy than previous approaches for only a small degradation
in performance.

Since memory accesses from DMAs are dominant in data
servers such as storage and database servers, our work takes
a significant step forward in memory energy management for
these servers, an important class of applications in which en-
ergy consumption is one of the major concerns.

We envision several directions for future work. First, we
plan to conduct run-time cost-benefit analysis before page mi-
gration, so that migration is performed only when it is benefi-
cial. Second, we will explore other workloads, such as TPC-
H workloads, and evaluate them in a whole-system simulator
that can run a real commercial database server. Third, we are
in the process of investigating the optimizations described in
Section 4.2 to reduce migration overheads.
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